
Math 111 lecture for Wednesday, Week 8

Our next goal is to define the integral of a function. If f is a nonnegative
function defined on a closed bounded interval [a, b], the integral

∫ b

a
f will be

used to define the area between the graph of f and the x-axis.

Upper and lower bounds. Let X be any subset of the real numbers, R.
An upper bound for X is any real number B that is at least as big as all the
numbers in X, i.e.,

x ≤ B for all x ∈ X.

Similarly, a An lower bound for X is any real number b that is no greater
than any numbers in X, i.e.,

b ≤ x for all x ∈ X.

Finally, the set X is simply called bounded, if it has both an upper and lower
bound.

Examples.

1. Let X = {−2, 7, 9}, a set consisting of 3 real numbers. Then every
number greater than or equal to 9 is an upper bound for X, and every
number less than or equal to −2 is a lower bound. So 9, 9.1, and 27 are
examples of upper bounds for X and −7, −7.234, and −π are examples
of lower bounds for X. The set X has upper and lower bounds, so X
is bounded.

2. Let Y = [3, 100) = {x ∈ R : 3 ≤ x ≤ 100}, a half-open, half-closed
interval. The set Y is bounded: any number greater than or equal
to 100 is an upper bound and any number less than or equal to 3 is a
lower bound.

3. Let Z = [0,∞), the set of nonnegative real numbers. Then Z has no
upper bounds, and every nonpositive number is a lower bound. The
set Z is not bounded. It is only bounded below.

4. The set R of all real numbers has no upper bound and no lower bound.
The same goes for the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
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Least upper bounds and greatest lower bounds. In general: if X has
an upper bound, then it has infinitely many upper bounds, and if X has a
lower bound, then it has infinitely many lower bounds. There is a property of
the real numbers that say this: if a set X has an upper bound, then it has a
least upper bound. The least upper bound, denoted lub(X), it characterized
by two properties: (i) it is an upper bound for X, and (ii) it is less than or
equal to every upper bound for X.

Similarly, if X has a lower bound, then it has a greatest lower bound. It is
denoted by glb(X) had is characterized by the two properties, (i) is is a lower
bound for X, and (ii) is is greater than or equal to every lower bound for X.

Thus, in some sense, lub(X) and glb(X) are the “best” upper and lower
bounds, respectively, for X, provided they exist.

Example.

1. If X = {−2, 7, 9}, then lub(X) = 9 and glb(X) = −2.

2. If Y = [3, 100), then lub(X) = 100 and glb(X) = 3.

3. If Z = [0,∞), then lub(X) does not exist, and glb(X) = 0. Simi-
larly, lub((−∞, 0]) = 0 and glb((−∞, 0]) does not exist.

4. The set R of all real numbers has neither a least upper bound nor a
greatest lower bound. The same holds for the set of integers Z.

5. Let

A =

{
1

n
: n = 1, 2, 3, . . .

}
=

{
1,

1

2
,
1

3
,
1

4
, . . .

}
.

Then lub(A) = 1, and glb(A) = 0.

6. Let

B =

{
n

n+ 1
: n = 1, 2, 3, . . .

}
=

{
1

2
,
2

3
,
3

4
,
4

5
, . . .

}
.

Then lub(B) = 1, and glb(A) = 1/2.

NOTE WELL: Even if the least upper and greatest lower bounds for a set
exist, they need not be in the set. For example, consider the set

X = (0, 1) = {x ∈ R : 0 < x < 1} .
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Then lub(X) = 1 and glb(X) = 0. However, neither 0 nor 1 is in (0, 1). This
interval, by definition does not contain its endpoints. It’s hard to appreciate
the importance of this fact now, but lub and glb are as important in defin-
ing the integral as limits were to defining the derivative. Recall that with
derivatives, we need to find out what value the function of h

f(c+ h)− f(c)

h

“should” have when h is 0 even though the function is actually undefined
at that point. In a similar way, lub(X) is the number that should be the
“biggest element of X” even though X may not have a biggest element.
(For instance, the set (0, 1) has no largest element: 1 is not in (0, 1), and
given any element in x ∈ (0, 1) there is another element in y ∈ (0, 1) such
that x < y—just take y to be the number that is halfway between x and 1.)

Integration. We start off with a relatively simple example. Consider the
function f(x) = x/2 on the interval [0, 3]:

0.5 1 1.5 2 2.5 3

0.5

1

1.5

Graph of f(x) =
x

2
.

We are interested in computing the area of the colored region that is under
the graph:

0.5 1 1.5 2 2.5 3

0.5

1

1.5

Graph of f(x) =
x

2
.
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Since this is a triangle, its area is

1

2
× base× height =

1

2
× 3× 3

2
=

9

4
.

To motivate the definition of the integral, we are going to calculate this area
in a more difficult way (but which has the advantage of generalizing to much
more complicated functions).

The idea of integration is to compute area using only rectangles: give any
region, divide the region up into rectangles as close as you can, then estimate
the region by adding up the areas of the approximating rectangles. Of course,
if the region is curved, you can never divide it up exactly into a finite number
of rectangles, although, if you are willing to use very tiny rectangles, you can
hope to estimate the area as close as you’d like. However, if you want the
precise area, you can see that this rectangle method is going to lead to a
limiting process of some sort.

Below, we create an overestimation of the area of the triangle:

0.5 1 1.5 2 2.5 3

0.5

1

1.5

Graph of f(x) =
x

2
.

To estimate the area, we add the areas of these rectangles. The base of each
rectangle is 1/2, What about the height? Since the function is f(x) = x/2,
to find the height, we evaluate f at the right-hand endpoint of the base of
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each rectangle. The result is

E =

(
1

2
· 1

4

)
+

(
1

2
· 1

2

)
+

(
1

2
· 3

4

)
+

(
1

2
· 1
)

+

(
1

2
· 5

4

)
+

(
1

2
· 3

2

)

=
1

2

(
1

4
+

1

2
+

3

4
+ 1 +

5

4
+

3

2

)

=
1

2

(
1

4
+

2

4
+

3

4
+

4

4
+

5

4
+

6

4

)

=
1

2
· 1

4
(1 + 2 + 3 + 4 + 5 + 6)

=
21

8
= 2.625.

This overestimates the actual area of the triangle, 9/4 = 2.25.

We now create an underestimation of the area of the triangle:

0.5 1 1.5 2 2.5 3

0.5

1

1.5

Graph of f(x) =
x

2
.

The heights of the rectangles are now given by evaluating f(x) = x/2 at the
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left-hand endpoint of the base of each rectangle:

E ′ =

(
1

2
· 0
)

+

(
1

2
· 1

4

)
+

(
1

2
· 1

2

)
+

(
1

2
· 3

4

)
+

(
1

2
· 1
)

+

(
1

2
· 5

4

)

=
1

2

(
0 +

1

4
+

1

2
+

3

4
+ 1 +

5

4

)

=
1

2

(
0

4
+

1

4
+

2

4
+

3

4
+

4

4
+

5

4

)

=
1

2
· 1

4
(0 + 1 + 2 + 3 + 4 + 5)

=
15

8
= 1.875.

This underestimates the actual area of the triangle, 9/4 = 2.25.

To get better over- and underestimates, we can divide up the base into more
pieces and thus create better-fitting rectangles.
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