
Math 111 lecture for Monday, Week 7

Optimization and related rates examples

Recall the general method for optimization problems. We have two main
theorems:

Theorem 1. If f is differentiable at c and f has a local minimum or maxi-
mum at c, then f ′(c) = 0.

Theorem 2. (The extreme value theorem, EVT) If f is continuous on a
closed bounded interval [a, b], then f has a (global) minimum and maximum
on that interval.

These theorems suggest the following method for finding the minima and
maxima of a functions:

Procedure for optimization. Suppose that f is a continuous function on
a closed bounded interval [a, b]. Then the (global) minima and maxima for f
occur among the following points:

(i) The points in (a, b) at which the derivative of f is 0.

(ii) The points in (a, b) at which f is not differentiable.

(iii) The endpoints, a and b.

Example. Let f(x) = x3 − x. Find the minima and maxima for f on the
interval [−1, 2].

Solution. Follow the procedure outlined above. First collect the points:

(i) The function f is differentiable at all points in [−1, 2] (in fact, f is
differentiable at all points in R. So this step gives us no interesting
points to check.

(ii) We have

f ′(x) = 3x2 − 1 = 0 if and only if x = ±
√

1

3
.

(iii) The endpoints of the interval are −1 and 2.
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So we look for the extrema of f among the points ±
√

1/3, −1, and 2. Eval-
uate f at these points:

f

(
−
√

1

3

)
=

2

3

√
1

3
≈ 0.38, f

(√
1

3

)
= −2

3

√
1

3
≈ −0.38,

f(−1) = 0, f(2) = 6.

Thus, on the interval [−1, 2], the minimum of f is −2
√

1/3/3, occurring

at
√

1/3, and the maximum is 6, occurring at the endpoint, 2.
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Graph of f(x) = x3 − x on the interval [−1, 2].

While we have this picture, let’s check that the derivative actually is giving
the slope. We computed

f ′(x) = 3x2 − 1.

Therefore, the graph should be sloped upwards if and only if f ′(x) > 0.
Compute:

f ′(x) > 0 ⇔ 3x2−1 > 0 ⇔ x2 >
1

3
⇔ x >

√
1

3
or x < −

√
1

3
.

This result is consistent with the graph, drawn above.

Example. This example illustrates the fact that in our procedure, we need
to check points at which the derivative does not exist. Let f(x) = |x| on the
interval [−1, 1]:
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Graph of f(x) = |x| on the interval [−1, 1].

Apply our procedure. The function f is continuous on a closed bounded
interval. It is differentiable in the interior of the interval, (−1, 1), except at
the point x = 0. To see that it is not differentiable at 0, not that

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

h− 0

h
= 1

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

(−h)− 0

h
= −1.

This is because, |h| = h when h > 0 and |h| = −h when h < 0. Since the
left-hand and right-hand limits are not equal, we know that the limit

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

does not exist. So f is not differentiable at 0.

Back to our procedure. The only critical point is x = 0, where the derivative
does not exist. (At the other points in (−1, 1), the derivative is ±1, hence,
nonzero.) So we need to check x = 0 and the endpoints x = ±1. We find
that f has a minimum of 0, at x = 0, and a maximum 1, at x = ±1.

The next example illustrates what one might do if the extreme value theorem
does not apply.

Example. Consider the function

f(x) =
1

1− x2

on the interval (−1, 1). First note that f is continuous on (−1, 1). However,
the extreme value theorem does not apply, unfortunately, since (−1, 1) is not
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a closed interval. So we need to be creative. First, it’s clear the function
blows up where x = ±1. In fact, as x→ −1 or x→ 1 from points inside the
interval, the function f takes off to +∞. Therefore, f has no maximum value
on (−1, 1). We can look for a minimum, though. Since f is differentiable
on (−1, 1), we know that f ′ will be 0 at any minimum (it needs to flatten
out at these points). Computing the derivative of f using the quotient rule
gives

f ′(x) =
2x

(1− x2)2
.

We have f ′(x) = 0 only at the point x = 0.

So far, we can only conclude that f has a local minimum at x = 0. However,
note that for x ∈ (−1, 1) we have that f ′(x) < 0 for x < 0 and f ′(x) > 0
for x > 0. This means that f is sloped downwards for x < 0 and sloped
upwards for x > 0. This guarantees that x = 0 is a global minimum on the
interval (−1, 1).
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Graph of f(x) = 1
1−x2 .

One more related rates problem. Suppose you are standing on a dock
pulling in a boat attached to a rope. If you pull the rope in at a constant
rate, how does the speed at which the boat approaches the dock change?

solution: The relevant picture is:
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The height of the point where the rope is being pulled is h feet above the
water. We will assume that h is constant. The boat is x feet away from the
dock, and the rope has length r. We are given that

dr

dt
= −k = constant.

We take k > 0, so the minus sign tells us that the rope is getting shorter
over time. We are interested in the rate of change of x, i.e., in dx/dt. The
equation relating the variables is

x2 + h2 = r2.

Take derivatives with respect to time, remembering that h is constant:

2x
dx

dt
= 2r

dr

dt
,

or

x
dx

dt
= r

dr

dt
.

Since dr/dt = −k, we get

x
dx

dt
= −kr.

To get a solution in terms of r, we solve x2 + h2 = r2 for x and substitute:

dx

dt
= −k r√

r2 − h2
.

So it is clear the speed of the boat is not constant. In fact, as time goes on, r
approaches h, so the numerator is bounded around h with the denominator
goes to 0, so

lim
r→h

dx

dt
= lim

r→h
−k r√

r2 − h2
= −∞.

The graph of dx/dt as a function of r for r > h looks something like this:
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Graph of
dx

dt
as a function of r.

In reality, it would be impossible to keep pulling in the rope at a constant
speed.
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