Math 111 lecture for Monday, Week 7

Optimization and related rates examples

Recall the general method for optimization problems. We have two main
theorems:

Theorem 1. If f is differentiable at ¢ and f has a local minimum or maxi-
mum at ¢, then f'(¢) = 0.

Theorem 2. (The extreme value theorem, EVT) If f is continuous on a
closed bounded interval [a, b], then f has a (global) minimum and maximum
on that interval.

These theorems suggest the following method for finding the minima and
maxima of a functions:

Procedure for optimization. Suppose that f is a continuous function on
a closed bounded interval [a, b]. Then the (global) minima and maxima for f
occur among the following points:

(i) The points in (a,b) at which the derivative of f is 0.
(ii) The points in (a,b) at which f is not differentiable.
(iii) The endpoints, a and b.

Example. Let f(z) = 2°

interval [—1,2].

— x. Find the minima and maxima for f on the

Solution. Follow the procedure outlined above. First collect the points:

(i) The function f is differentiable at all points in [—1,2] (in fact, f is
differentiable at all points in R. So this step gives us no interesting
points to check.

(ii) We have

1
fl(x)=32>—-1=0 ifand onlyif =z =4 3

(iii) The endpoints of the interval are —1 and 2.
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So we look for the extrema of f among the points +4/1/3, —1, and 2. Eval-
uate f at these points:

1 2 /1 1 2 /1
/2 ) =24/220.38 — | = —=4/=~ —0.38
f( 3) 3V 3 ’ f( 3) 3V3 ’

f(-1) =0, /(2) = 6.

Thus, on the interval [—1,2], the minimum of f is —2,/1/3/3, occurring
at \/1/3, and the maximum is 6, occurring at the endpoint, 2.
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Graph of f(z) = 23 — z on the interval [—1,2].

While we have this picture, let’s check that the derivative actually is giving
the slope. We computed
f'(z) =32% — 1.

Therefore, the graph should be sloped upwards if and only if f'(x) > 0.

Compute:
= > \/T < L
x — or < —4/=.
3 3

This result is consistent with the graph, drawn above.

fllz)>0 & 32°~1>0 < 22>

Wl =

Example. This example illustrates the fact that in our procedure, we need
to check points at which the derivative does not exist. Let f(x) = |z| on the
interval [—1,1]:
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Graph of f(z) = |z| on the interval [—1,1].

Apply our procedure. The function f is continuous on a closed bounded
interval. It is differentiable in the interior of the interval, (—1, 1), except at
the point x = 0. To see that it is not differentiable at 0, not that

lim (0+h) 1) _ — lim u:1
h—0+ h—o+t h

lim (0+h> fO) _ o, GM-0_
h—0— h—0—

This is because, |h| = h when h > 0 and |h| = —h when h < 0. Since the
left-hand and right-hand limits are not equal, we know that the limit

£1(0) — tim FOED = 1O)

h—0 h

does not exist. So f is not differentiable at 0.

Back to our procedure. The only critical point is x = 0, where the derivative
does not exist. (At the other points in (—1,1), the derivative is £1, hence,
nonzero.) So we need to check = 0 and the endpoints z = £1. We find
that f has a minimum of 0, at x = 0, and a maximum 1, at z = +1.

The next example illustrates what one might do if the extreme value theorem
does not apply.

Example. Consider the function

1
1—22

fz) =

on the interval (—1,1). First note that f is continuous on (—1,1). However,
the extreme value theorem does not apply, unfortunately, since (—1,1) is not
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a closed interval. So we need to be creative. First, it’s clear the function
blows up where x = +1. In fact, as x+ — —1 or x — 1 from points inside the
interval, the function f takes off to +00. Therefore, f has no maximum value
on (—1,1). We can look for a minimum, though. Since f is differentiable
on (—1,1), we know that f’ will be 0 at any minimum (it needs to flatten
out at these points). Computing the derivative of f using the quotient rule

gives )
, . T
f (J]) - (1 _ IQ)Q‘

We have f’(x) = 0 only at the point z = 0.

So far, we can only conclude that f has a local minimum at x = 0. However,
note that for z € (—1,1) we have that f'(z) < 0 for x < 0 and f'(z) > 0
for x > 0. This means that f is sloped downwards for x < 0 and sloped
upwards for > 0. This guarantees that x = 0 is a global minimum on the
interval (—1,1).
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Graph of f(z) = .

—X

One more related rates problem. Suppose you are standing on a dock
pulling in a boat attached to a rope. If you pull the rope in at a constant
rate, how does the speed at which the boat approaches the dock change?

SOLUTION: The relevant picture is:



I
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(0,0) water (x,0)

The height of the point where the rope is being pulled is h feet above the
water. We will assume that h is constant. The boat is x feet away from the
dock, and the rope has length r. We are given that

dr
dt
We take k£ > 0, so the minus sign tells us that the rope is getting shorter

over time. We are interested in the rate of change of x, i.e., in dz/dt. The
equation relating the variables is

= —k = constant.

22+ h? =2

Take derivatives with respect to time, remembering that h is constant:

dx dr
p T
Ta
or
dt — dt’
Since dr/dt = —k, we get
x@ = —kr
dt '

To get a solution in terms of r, we solve x? + h? = r? for x and substitute:

dx r

— = —k——.
dt /2 _ |2

So it is clear the speed of the boat is not constant. In fact, as time goes on, r

approaches h, so the numerator is bounded around h with the denominator

goes to 0, so

im & i "

roh dt roh A2 T2

The graph of dx/dt as a function of r for r > h looks something like this:
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Graph of 4% as a function of r.

dt

In reality, it would be impossible to keep pulling in the rope at a constant
speed.



