Math 111 lecture for Wednesday, Week 4

Warm-up and review. Suppose the position of a particle along the y-axis

is given by f(z) = /.

1. What is the average speed of the particle between times x = 1 and x =
47

SOLUTION:
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2. What is the instantaneous speed of the particle at time x = 17
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Vi+h—-1 V1+h+1
= m .
h—50 h vVi+h+1
. (14+h -1
= lim
h=0 h(v/1+h + 1)

h
= lim
h=0 h(v/T+ h+ 1)

1
= lim —
h=0 /T4 h+ 1

3. Find the equation for the tangent line to f at x = 1.



SOLUTION: We have just calculated the slop of that line: f'(1) = 1/2.
Therefore, the line has equation
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Graph of f(z) = /z and its tangent line at z = 1.

4. What is the instantaneous speed at an arbitrary time z.
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d.

What are lim, ,o+ f'(z) and lim, ., f'(x), and what does this mean
geometrically?

SOLUTION: We won’t prove this, but since f'(z) = 1/2+/z, it turns
out that lim, ,o+ f'(x) = oo and lim, , f'(z) = 0. Note from the
graph of f(z), drawn above, that the slope of the graph approaches oo
as * — 0" and approaches 0 as x — oo.

First properties of derivatives.

Recall our limit theorem which told us how to build up complicated limits
from the limits of simple functions. There is a similar result for derivatives,
but it has a very interesting twist when it comes to products of functions.

Theorem. Suppose [ and g are differentiable functions at a point x.

1.

The derivative of a constant function is 0: Let ¢ € R, and let h(x) = c.
or written in different notation, (¢)’ = 0. (Note that the graph of a
constant function is a straight line with slope 0. So this makes sense.)

Let k(z) = x. Then k'(z) =1, i.e., (x)’ = 1. (Note that the graph of k
is a line with slope 1.)

(f(x)+g(x)) = f'(z)+ ¢ (z): the derivative of a sum is the sum of the
derivatives.

The product rule or Leibniz rule.
(f()g(2)) = f'(2)g(x) + f(x)g'(2).

The quotient rule.
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We’ll prove parts of this theorem later. They follow straight from the defini-
tion of the derivative by taking limits. For now, let’s play with the theorem
to see what it tells us. First, some notation to save time. Instead of writ-
ing (f(z)g(x)) = f(x)g(x) + f(x)g(x), we'll often write (fg)' = f'g + fg',
dropping the z. Similarly, we’ll write
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One consequence of the theorem is that when we compute derivatives we can
“pull constants out” in the following sense: Let ¢ be a constant. Then by
the product rule:

(cf) =@ f+ecf =0-f+cf =cf.
For example,
(5z) =5(z) =5-1=5.
Here is another example of a consequence of the theorem:
(f=9)=f+(=9)=f+(-1-9)
Continuing, using the fact that we can pull constants out:
:f/_l'(g)/:f/_g,-
So(f—g)=f-¢.

Finally, note that the function f(z) = 2™ where n is any number n = 1,2, . ..

can be written as a product of functions: 2™ = z - x---x. So we can apply
the product rule to find its derivative. For instance,

() =(v-2) =@ +a@) =1-2+1-1=2z.
Knowing that (z*)" = 2z, we find
(%) = (2*-2) = (2®)r+2° (z) =22 -2+ 2% 1 =327
Knowing that (z%) = 32?%, we find
(" =% 2)= @z +2° () =32 - v +2° 1 = 42°.
Continuing in this way we get
(2") = na™ !
forn=1,2,...
Combining that result with the derivative theorem, we can now compute the
derivative of any polynomial (or quotient of polynomials). For example:
(32° — 22% = 7) = (32°) + (=22%) + (=7)
=3(z°) — 2(z®) + 0
= 3(5z?) — 2(2x)
= 152 — 4a.



