Math 111 lecture for Friday, Week 4
Our goal today is to prove the “derivative theorem” presented last time.
We'll need the definition of the derivative:
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provided the limit exists, and we’ll need our earlier limit theorem:

Limit Theorem. Suppose lim,_,. f(z) = L and lim,_,. g(z) = M. Then

L. lim, . (f(x) +g(x)) =L+ M,
2. lim, . f(x)g(x) = LM,
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Derivative theorem. Suppose f and g are differentiable functions at a
point . Then

L (f(z) +g(2)) = f'(z) + ¢'(z),

2. product rule or Leibniz rule:

3. quotient rule:




Proof. Part 1:

(f(x) + g(z)) = lim (flz+h)+g(z+h) = (f(z)+g(z))
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= f'(z) + g'(x).

Notice how we used our earlier limit theorem to say that the limit of a sum
is the sum of the limits.

Part 2. This one’s a bit trickier—it involves subtracting and adding f(x)g(z+
h):

(F(2)g(a)) = tim LMol + 1) = [)g(2)
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flx+h)g(x+h) = f(x)g(z + h) + f(x)g(x + h) — fz)g(x)
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For the last two steps in the above calculation, we used parts 1 and 2 of the
limit theorem. Continuing, now use the definition of the derivative:

(f(@)g()) = f' () lim g(x + B) + (lim f(2)) g'().
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We have lim,o f(z) = f(z) since f(z) can be thought of as a constant
function of h. Therefore,

(f(@)g(@)) = f'(@) (lim g(z + b)) + f(2)g(x).

Finally, we use a fact the we may or may not prove later: differentiable
functions are continuous, i.e., we can evaluate their limits by just plugging in
the limit point. In particular, g is continous. Then g(x+h) is a composition of
continuous functions of h: g(z+h) = g(k(h)) where k(h) = z+h. Therefore,
limy 0 g(z + h) = g(x + 0) = g(x). So we finally get

(f(@)g(x)) = [(x)g(z) + f(x)g ().
For Part 3, we first leave the following as an exercise for the reader:
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where ¢*(z) = g(z) - g(x). We combine this with the product rule of Part 1

to get
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where in the last step, we’ve just found a common denominator. O

Last time, we saw that this theorem makes calculating derivatives a lot easier
than having to go back to the definition of the derivative every time. We
saw that knowing (¢)’ = 0 for a constant ¢ € R, and (x)" = 1, we can use the
theorem to compute the derivative of any rational function. For instance,
repeated use of the product rule allowed us the compute (z") = nz" !
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for n =1,2,... Using that fact and the derivative theorem, we can evaluate
derivatives of all polynomials. For example,

(32* +2? —dz +2)" = (32 + (2?) + (=4a) + (2))  (Part 1)
= 3(2*) + (%) — 4(x) +0 (pulling out constants—see the last lecture)
= 3(42°) + (22) — 4(1)
= 122% 4 2z — 4.

With practice, you can perform all of these steps at once:

(62° — 42® + 122 — 7o + 2)' = 302" — 122 + 242 — 7.

Now we apply the quotient rule to compute (™) for n < 0. To start,
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Using this, we get
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Continuing in this way, we get
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forn=1,2,3,...

Here is an example of a computation of the derivative of a typical rational
function using the quotient rule:

x? " (@) (2" + 32 +2) — 2?(2* + 32 + 2)
43 +2) (x* 4 3z + 2)?

2z(zt + 3z + 2) — 2 (423 + 3)
B (x4 + 3z 4 2)?

_22° 4 62% + 4w — 42 — 3a?
B (x* + 3z + 2)?

227+ 32 + 4w
(x4 3z +2)%




