
Math 111 lecture for Friday, Week 4

Our goal today is to prove the “derivative theorem” presented last time.

We’ll need the definition of the derivative:

f ′(x) = lim
h→0

f(x + h)− f(x)

h
,

provided the limit exists, and we’ll need our earlier limit theorem:

Limit Theorem. Suppose limx→c f(x) = L and limx→c g(x) = M . Then

1. limx→c(f(x) + g(x)) = L + M ,

2. limx→c f(x)g(x) = LM ,

3. if M 6= 0, then

lim
x→c

f(x)

g(x)
=

L

M
.

Derivative theorem. Suppose f and g are differentiable functions at a
point x. Then

1. (f(x) + g(x))′ = f ′(x) + g′(x),

2. product rule or Leibniz rule:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

3. quotient rule: (
f(x)

g(x)

)′
=

f ′(x)g(x)− f(x)g′(x)

g2(x)
.
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Proof. Part 1:

(f(x) + g(x))′ = lim
h→0

(f(x + h) + g(x + h))− (f(x) + g(x))

h

= lim
h→0

(f(x + h)− f(x)) + (g(x + h)− g(x))

h

= lim
h→0

(
f(x + h)− f(x)

h
+

g(x + h)− g(x)

h

)

= lim
h→0

f(x + h)− f(x)

h
+ lim

h→0

g(x + h)− g(x)

h

= f ′(x) + g′(x).

Notice how we used our earlier limit theorem to say that the limit of a sum
is the sum of the limits.

Part 2. This one’s a bit trickier—it involves subtracting and adding f(x)g(x+
h):

(f(x)g(x))′ = lim
h→0

f(x + h)g(x + h)− f(x)g(x)

h

= lim
h→0

f(x + h)g(x + h)− f(x)g(x + h) + f(x)g(x + h)− f(x)g(x)

h

= lim
h→0

(
(f(x + h)− f(x))g(x + h)

h
+

f(x)(g(x + h)− g(x))

h

)

= lim
h→0

(f(x + h)− f(x))g(x + h)

h
+ lim

h→0

f(x)(g(x + h)− g(x))

h

= lim
h→0

(f(x + h)− f(x))

h
lim
h→0

g(x + h) + lim
h→0

f(x) lim
h→0

(g(x + h)− g(x))

h
.

For the last two steps in the above calculation, we used parts 1 and 2 of the
limit theorem. Continuing, now use the definition of the derivative:

(f(x)g(x))′ = f ′(x) lim
h→0

g(x + h) +
(

lim
h→0

f(x)
)
g′(x).
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We have limh→0 f(x) = f(x) since f(x) can be thought of as a constant
function of h. Therefore,

(f(x)g(x))′ = f ′(x)
(

lim
h→0

g(x + h)
)

+ f(x)g′(x).

Finally, we use a fact the we may or may not prove later: differentiable
functions are continuous, i.e., we can evaluate their limits by just plugging in
the limit point. In particular, g is continous. Then g(x+h) is a composition of
continuous functions of h: g(x+h) = g(k(h)) where k(h) = x+h. Therefore,
limh→0 g(x + h) = g(x + 0) = g(x). So we finally get

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

For Part 3, we first leave the following as an exercise for the reader:(
1

g(x)

)′
= − g′(x)

g2(x)

where g2(x) = g(x) · g(x). We combine this with the product rule of Part 1
to get (

f(x)

g(x)

)′
=

(
f(x) · 1

g(x)

)′

= f ′(x) · 1

g(x)
+ f(x)

(
1

g(x)

)′

=
f ′(x)

g(x)
+ f(x)

(
− g′(x)

g2(x)

)

=
f ′(x)g(x)− f(x)g′(x)

g2(x)
,

where in the last step, we’ve just found a common denominator. �

Last time, we saw that this theorem makes calculating derivatives a lot easier
than having to go back to the definition of the derivative every time. We
saw that knowing (c)′ = 0 for a constant c ∈ R, and (x)′ = 1, we can use the
theorem to compute the derivative of any rational function. For instance,
repeated use of the product rule allowed us the compute (xn)′ = nxn−1

3



for n = 1, 2, . . . Using that fact and the derivative theorem, we can evaluate
derivatives of all polynomials. For example,(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′ (Part 1)

= 3(x4)′ + (x2)′ − 4(x)′ + 0 (pulling out constants—see the last lecture)

= 3(4x2) + (2x)− 4(1)

= 12x2 + 2x− 4.

With practice, you can perform all of these steps at once:

(6x5 − 4x3 + 12x2 − 7x + 2)′ = 30x4 − 12x2 + 24x− 7.

Now we apply the quotient rule to compute (xn)′ for n < 0. To start,

(x−1)′ =

(
1

x

)′
= −(x)′

x2
= − 1

x2
.

Using this, we get

(x−2)′ =

(
1

x2

)′
= − (x2)′

(x2)2
= −2x

x4
= − 2

x3
.

Continuing in this way, we get(
1

xn

)′
= − n

xn+1
.

for n = 1, 2, 3, . . .

Here is an example of a computation of the derivative of a typical rational
function using the quotient rule:(

x2

x4 + 3x + 2

)′
=

(x2)′(x4 + 3x + 2)− x2(x4 + 3x + 2)′

(x4 + 3x + 2)2

=
2x(x4 + 3x + 2)− x2(4x3 + 3)

(x4 + 3x + 2)2

=
2x5 + 6x2 + 4x− 4x5 − 3x2

(x4 + 3x + 2)2

=
−2x5 + 3x2 + 4x

(x4 + 3x + 2)2
.
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