
Math 111 lecture for Monday, Week 3

Last time, we introduced the Limit Theorem, which allows us to give “high
level” limit proofs, i.e., limit proofs that don’t go all the way back to the
definition, using εs and δs. The strategy for evaluating limits using the limit
theorem is:

1. First compute the limits of some simple functions by hand. In our case,
we showed how to evaluate the limit of a constant function and of the
function f(x) = x.

2. Next, the limit theorem shows us how to compute limits for any func-
tion that we can build out of these simple functions using addition,
multiplication, and division. Given constant function and f(x) = x as
our building blocks, for example, we can create all rational functions,
i.e., all functions of the form g(x)/h(x) where g and h are polynomials.

We will now introduce two important techniques for evaluating limits: the
cancellation and the rationalization tricks.

Cancellation trick. Last time, we saw a typical example of using the limit
theorem to evaluate the limit of a rational function (quotient of polynomials).
Here, we’ll give a similar example but where the limit theorem seems to break
down.

lim
x→2

x2 + x− 6

x− 2
=

limx→2(x
2 + x− 6)

limx→2(x− 2)

=
limx→2 x

2 + limx→2 x+ limx→2(−6)

limx→2 x+ limx→2(−2)

=
limx→2 x limx→2 x+ limx→2 x+ limx→2(−6)

limx→2 x+ limx→2(−2)

=
2 · 2 + 2− 6

2− 2

=
0

0
.
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What’s the problem? The answer is that part 3 of the limit theorem says
that

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)

provided limx→c g(x) 6= 0. So the very first step of the argument above is
not allowed since limx→2(x − 2) = 0. Worse, it turns out that it is limits
like this one that are most important in the study of calculus. Recall that
in computing instantaneous speed for a distance function f(t) at time t = a,
we first compute the average speed over a time interval h:

average speed(h) =
f(a+ h)− f(a)

(a+ h)− a
=
f(a+ h)− f(a)

h
,

then we take the limit as h→ 0. However, trying to apply the limit theorem,
a similar problem arises since limh→0 h = 0 in the denominator. So we can’t
directly use the limit theorem.

We now correctly calculate the limit in the example to show a typical way
forward in this situation:

lim
x→2

x2 + x− 6

x− 2
= lim

x→2

(x− 2)(x+ 3)

x− 2

= lim
x→2

(x+ 3)

= lim
x→2

x+ lim
x→2

3

= 2 + 3

= 5.

In the second step, we replace the function

(x− 2)(x+ 3)

x− 2

with the function
x+ 3.

The reason this is OK is that these two functions are equal for all x except
x = 2. When x = 2, the first function is undefined while the second function
is 2 + 3 = 5. However, when calculating the limit, recall that we only worry
about x such that 0 < |x − c| < δ. Since 0 < |x − c|, this means we never
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consider the case where x = c, or in our case, x = 2. So for the purpose of
our limit, we are allowed to substitute x+ 3 for (x− 2)(x− 3)/(x− 3).

Rationalization trick. The cancellation trick, just illustrated above, comes
up fairly often in calculus. Here is another, somewhat less common, tech-
nique. It relies on the fact that (a− b)(a+ b) = a2− b2 and that multiplying
the top and the bottom of a fraction by the same thing does not change the
value of the fraction (since it amounts to multiplying by 1). We will need to
use the fact that limx→6

√
x+ 3 + 3 = 6, which we’ll just assume for now (it

should seem reasonable) and prove later.

Consider the limit

lim
x→6

√
x+ 3− 3

x− 6
.

The first thing you should consider is a straightforward application of our
limit theorem. That amounts plugging in 6 for x. Unfortunately, limx→6(x−
6) = 0 in the denominator. However, there is hope for cancellation since
limx→6(

√
x+ 3− 3) = 0, too. Here is how the computation goes:

lim
x→6

√
x+ 3− 3

x− 6
= lim

x→6

√
x+ 3− 3

x− 6
·
√
x+ 3 + 3√
x+ 3 + 3

= lim
x→6

(
√
x+ 3− 3)(

√
x+ 3 + 3)

(x− 6)(
√
x+ 3 + 3)

= lim
x→6

(x+ 3)− 9

(x− 6)(
√
x+ 3 + 3)

= lim
x→6

x− 6

(x− 6)(
√
x+ 3 + 3)

= lim
x→6

1√
x+ 3 + 3

=
1

6
.
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We now give a proof of part 1 of the Limit Theorem: if limx→c f(x) and
limx→c g(x) exist, then

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

We gave the motivation for the proof in the last lecture (and you might want
to review that motivation before continuing). The proof will include the
important “ε/2-trick” and depends on the following workhorse of analysis:

Triangle inequality. Let x and y be real numbers. Then

|x+ y| ≤ |x|+ |y|.

Proof. Math 112. �.

For example,
3 = | − 3 + 6| ≤ | − 3|+ |6| = 3 + 6 = 9.

Proof of part 1 of the limit theorem. Suppose limx→c f(x) = L and
limx→c g(x) = M . We must show that

lim
x→c

(f(x) + g(x)) = L+M.

Let ε > 0. We need to show that there is a δ > 0 such that 0 < |x− c| < δ
implies

|(f(x) + g(x))− (L+M)| < ε.

Since limx→c f(x) = L, we know that given any ε′ > 0, there is a δ′ > 0 such
that 0 < |x− c| < δ′ implies |f(x)− L| < ε′. In particular, there is such a δ′

in the case where ε′ = ε/2 (where ε is the number we need to beat, fixed
above). To summarize: there exists δ′ > 0 such that 0 < |x− c| < δ′ implies

|f(x)− L| < ε

2
.

By the same argument, since limx→c g(x) = M , there exists a δ′′ > 0 such
that 0 < |x− c| < δ′′ implies

|g(x)−M | < ε

2
.
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Recall that once we have one δ that works in the definition of the limit, then
we can replace it by any smaller (positive) δ. So define δ = min {δ′, δ′′},
the minimum of δ′ and δ′′. It follows that if 0 < |x − c| < δ we have both
inequalities

|f(x)− L| < ε

2
and |g(x)−M | < ε

2
,

simultaneously. Using the triangle inequality, we then see that 0 < |x−c| < δ
implies

|(f(x) + g(x))− (L−M)| = |(f(x)− L) + (g(x)−M)|

≤ |f(x)− L|+ |g(x)−M |

<
ε

2
+
ε

2

= ε,

as required. �
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