Math 111 lecture for Friday, Week 3

Today, we’ll talk about two things: variations on the definition of the limit,
and the intermediate value theorem (IVT).

I. VARIATIONS ON THE DEFINITION OF THE LIMIT.

Right- and left-hand limits. We’'ll start with an example. Consider the func-

tion
1 ifxz>0
J(@) = {—1 if 2 < 0.

—

Graph of f(z).

As you might guess from the picture, lim, o f(x) does not exists (for instance,
you can’t beat ¢ = 2 with any ). However, only think of the right-hand side
of this graph, the limit looks like it should be 1, and if you only think of the
left-hand side, the limit looks like it should be —1. The following definitions
make this intuition precise.

Definition. Right-hand limit: lim, ,.+ f(x) = L if for all € > 0, there
exists 0 > 0 such that if = satisfies 0 < |x — ¢| < ¢ and ¢ < z, then
|[f(x) = L] <e.

Left-hand limit lim,_,.~ f(x) = L if for all € > 0, there exists 6 > 0 such that
if z satisfies 0 < |z — ¢| < 0 and = < ¢, then |f(z) — L| < e.

Remark. Not that these definitions look very similar to the ordinary defini-
tion of the limit. The only difference is two conditions are placed on z: first,
0 < |z —¢| <9, just as before, and second x is restricted to lie to either the
right of ¢ (i.e., ¢ < x) or to the left of ¢ (i.e., x < ¢). There is a nice way
we can combine the two conditions on x into one expression. For the case of



right-hand limits, note that the condition ¢ < z is equivalent to 0 < x — ¢,
which is equivalent to |x — ¢/ =2 — ¢. So

c<zx and O0<|r—c| <9

is equivalent to
0<zx—c<d.

Similarly, z < ¢1is equivalent to 0 < ¢—z, which is equivalent to |z —c| = c—x.
So
c<z and 0<|r—¢|/ <

is equivalent to
0<z—c<o.

Here is a picture of the situation on the number line:

O<c—=z O<zxz—c
c

]
T

In the ordinary definition of the limit, the z-values can be to the right or to
the left of ¢, but for one-sided limits, they are restricted to one side of c.

The following theorem is useful in proving a function does not have a limit.
Theorem. Let f be a function defined in an interval about a point c.

Then lim,_,. f(z) exists if and only if lim, ,.+ f(x) and lim, .- f(x) exist
and are equal. In that case,

lim f(z) = lim f(z) = lim f(z).

T—rC z—ct T—c™

Example. For the function f given at the beginning of this lecture, we have

lim f(zr) =1 and lim f(z)=—1.

z—0t z—0~

Since the right- and left-hand limits are not equal, our theorem says that
lim, .o f(x) does not exist.

Limits at co. Below, we graph the function ¢g(z) = 1/x:
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Graph of g(z) = 1/x.

As x gets very large, in the positive or negative direction, the function g(z) =
1/z gets very close to 0. So it is tempting to take the limit as x goes to co
or to —oo. The trouble with trying to use our definition of the limit to make
sense of the statement lim,_,,, = 0 is that the condition 0 < |x—¢| < § would
become 0 < |z — oco| < §, which does not make sense. What would x — oo
mean? So to make our intuition precise requires a different definition, which
we give below:

Definition. We say lim, ,,, f(xz) = L if for all ¢ > 0, there exists N such
that if z > N, then |f(z)— L| < e. We say lim,_,_, f(z) = L if for alle > 0,
there exists NV such that if x < N, then |f(z) — L| < e.

Example. With these definitions, we have

1
lim — =0 and lim — =0.
rx—00 I T——00 I

Infinite limits. Now consider the function h(z) = 1/2?, whose graph appears
below:



Graph of g(z) = 1/x.

What happens as x+ — 07 This situation is somewhat similar to the previous
one. Here is the definition we need:

Definition. We say lim, ,. f(x) = oo if for all N, there exists 6 > 0 such
that 0 < |z — ¢| < oo implies f(z) > N. We say lim,_,. f(z) = —oo if for
all N, there exists § > 0 such that 0 < |z — ¢| < oo implies f(z) < N.

Remark. The condition f(z) > N should be thought of as saying “f(x) is
really large. Similarly, f(z) < N should be thought of a saying that ” f(z) is
really negative.

Example. With these definitions, we have



Intermediate Value Theorem (IVT). If f is a continuous function on a
closed interval [a,b], and k is a number between f(a) and f(b), then there
exists ¢ € [a, b] such that f(c) = k.

Proof. Math 112. |

Graph of f(z).

Corollary. Suppose f is continuous on [a,b]. If f(a) and f(b) have opposite
signs, then there exists ¢ € [a, b] such that f(c) = k.

Proof. If f(a) and f(b) have opposite signs, then & = 0 is between f(a)
and f(b). Apply the IVT. O

Example. Consider the polynomial f(z) = 2°+x+1. Then f is continuous
since it’s a polynomial. Since f(—1) = —1 and f(0) = 1, by the IVT, we
know there is a ¢ € [—1, 0] such that f(c¢) = 0. To find a more precise locate
for a point where f is 0, compute f(—0.5). We find f(—0.5) = 0.46875,
which is positive. We know that f(—1) is negative. Thus, by the IVT, there
is a ¢ € [—1,—0.5] such that f(c) = 0. Now evaluate f at the midpoint
of [=1,—0.5] and check out its sign. This helps narrow the locate of a zero
of f even further. You can repeat this process, dividing an interval in half
at each step to quickly approximate a zero of the function f.



