
Math 111 lecture for Friday, Week 3

Today, we’ll talk about two things: variations on the definition of the limit,
and the intermediate value theorem (IVT).

I. Variations on the definition of the limit.

Right- and left-hand limits. We’ll start with an example. Consider the func-
tion

f(x) =

{
1 if x > 0

−1 if x < 0.
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y

Graph of f(x).

As you might guess from the picture, limx→0 f(x) does not exists (for instance,
you can’t beat ε = 2 with any δ). However, only think of the right-hand side
of this graph, the limit looks like it should be 1, and if you only think of the
left-hand side, the limit looks like it should be −1. The following definitions
make this intuition precise.

Definition. Right-hand limit: limx→c+ f(x) = L if for all ε > 0, there
exists δ > 0 such that if x satisfies 0 < |x − c| < δ and c < x, then
|f(x)− L| < ε.

Left-hand limit limx→c− f(x) = L if for all ε > 0, there exists δ > 0 such that
if x satisfies 0 < |x− c| < δ and x < c, then |f(x)− L| < ε.

Remark. Not that these definitions look very similar to the ordinary defini-
tion of the limit. The only difference is two conditions are placed on x: first,
0 < |x− c| < δ, just as before, and second x is restricted to lie to either the
right of c (i.e., c < x) or to the left of c (i.e., x < c). There is a nice way
we can combine the two conditions on x into one expression. For the case of
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right-hand limits, note that the condition c < x is equivalent to 0 < x − c,
which is equivalent to |x− c| = x− c. So

c < x and 0 < |x− c| < δ

is equivalent to
0 < x− c < δ.

Similarly, x < c is equivalent to 0 < c−x, which is equivalent to |x−c| = c−x.
So

c < x and 0 < |x− c| < δ

is equivalent to
0 < x− c < δ.

Here is a picture of the situation on the number line:

c
0 < x− c0 < c− x

In the ordinary definition of the limit, the x-values can be to the right or to
the left of c, but for one-sided limits, they are restricted to one side of c.

The following theorem is useful in proving a function does not have a limit.

Theorem. Let f be a function defined in an interval about a point c.
Then limx→c f(x) exists if and only if limx→c+ f(x) and limx→c− f(x) exist
and are equal. In that case,

lim
x→c

f(x) = lim
x→c+

f(x) = lim
x→c−

f(x).

Example. For the function f given at the beginning of this lecture, we have

lim
x→0+

f(x) = 1 and lim
x→0−

f(x) = −1.

Since the right- and left-hand limits are not equal, our theorem says that
limx→0 f(x) does not exist.

Limits at ∞. Below, we graph the function g(x) = 1/x:
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Graph of g(x) = 1/x.

As x gets very large, in the positive or negative direction, the function g(x) =
1/x gets very close to 0. So it is tempting to take the limit as x goes to ∞
or to −∞. The trouble with trying to use our definition of the limit to make
sense of the statement limx→∞ = 0 is that the condition 0 < |x−c| < δ would
become 0 < |x −∞| < δ, which does not make sense. What would x −∞
mean? So to make our intuition precise requires a different definition, which
we give below:

Definition. We say limx→∞ f(x) = L if for all ε > 0, there exists N such
that if x > N , then |f(x)−L| < ε. We say limx→−∞ f(x) = L if for all ε > 0,
there exists N such that if x < N , then |f(x)− L| < ε.

Example. With these definitions, we have

lim
x→∞

1

x
= 0 and lim

x→−∞

1

x
= 0.

Infinite limits. Now consider the function h(x) = 1/x2, whose graph appears
below:
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Graph of g(x) = 1/x.

What happens as x→ 0? This situation is somewhat similar to the previous
one. Here is the definition we need:

Definition. We say limx→c f(x) = ∞ if for all N , there exists δ > 0 such
that 0 < |x − c| < ∞ implies f(x) > N . We say limx→c f(x) = −∞ if for
all N , there exists δ > 0 such that 0 < |x− c| <∞ implies f(x) < N .

Remark. The condition f(x) > N should be thought of as saying “f(x) is
really large. Similarly, f(x) < N should be thought of a saying that ”f(x) is
really negative.

Example. With these definitions, we have

lim
x→0

1

x2
= 0.
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Intermediate Value Theorem (IVT). If f is a continuous function on a
closed interval [a, b], and k is a number between f(a) and f(b), then there
exists c ∈ [a, b] such that f(c) = k.

Proof. Math 112. �
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f(a)

f(b)
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Graph of f(x).

Corollary. Suppose f is continuous on [a, b]. If f(a) and f(b) have opposite
signs, then there exists c ∈ [a, b] such that f(c) = k.

Proof. If f(a) and f(b) have opposite signs, then k = 0 is between f(a)
and f(b). Apply the IVT. �

Example. Consider the polynomial f(x) = x5 +x+1. Then f is continuous
since it’s a polynomial. Since f(−1) = −1 and f(0) = 1, by the IVT, we
know there is a c ∈ [−1, 0] such that f(c) = 0. To find a more precise locate
for a point where f is 0, compute f(−0.5). We find f(−0.5) = 0.46875,
which is positive. We know that f(−1) is negative. Thus, by the IVT, there
is a c ∈ [−1,−0.5] such that f(c) = 0. Now evaluate f at the midpoint
of [−1,−0.5] and check out its sign. This helps narrow the locate of a zero
of f even further. You can repeat this process, dividing an interval in half
at each step to quickly approximate a zero of the function f .
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