
Math 111 lecture for Wednesday, Week 1

Slopes. Let f(t) = t2 be a function describing the position of a particle on the real
number line at time t. For instance, at time t = 2, the particle is at f(2) = 4.
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Graph of f(t) = t2.

Problem: Find the average speed of the particle from time t = 1 to time t = 3.

Solution: The net distance traveled is f(3)−f(1) = 32−12 = 8, and the time elapsed
is 3− 1 = 2. So

average speed =
∆f

∆t
=
f(3)− f(1)

3− 1
=

8

2
= 4.

Relevant picture:
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Graph of f(t) = t2 and a secant line.

∆f = 8

∆t = 2
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Problem: Find the average speed from an arbitrary time t to time t+h for some h > 0.

t

f(t) = t2

t+ h

f(t+ h) = (t+ h)2

Graph of f(t) = t2 and a secant line.

∆f = (t+ h)2 − t2

∆t = h

We have

average speed =
∆f

∆t

=
(t+ h)2 − t2

(t+ h)− t

=
t2 + 2th+ h2 − t2

h

=
2th+ h2

h

=
(2t+ h)h

h

= 2t+ h.

(In the last step, we used the fact that h 6= 0.) For example, the average speed from
time 1 to time 1.1 = 1 + 0.1 (so t = 1 and h = 0.1) is

2 · 1 + 0.1 = 2.1.
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Let h get really small to estimate the instantaneous speed at time t: as the time
interval h = (t + h) − t approaches 0, the average speed approaches 2t. We’ve just
calculated the derivative, f ′(t), of f at an arbitrary time t and found that f ′(t) = 2t.

At the time t = 1, the instantaneous speed is f ′(1) = 2 · 1 = 2. The best linear
approximation to the function f at time t = 1, i.e., the line that best describes the
function f at time t = 1, is the line with slope f ′(1) = 2 and passing through the
point in question, (1, f(1)) = (1, 12) = (1, 1). So the equation for the line has the
form y = mx+ b = 2x+ b. To find b, we plug in the point (1, 2):

1 = 2 · 1 + b ⇒ b = 1− 2 = −1.

So the best linear approximation to f at t = 1 is

y = 2x− 1.

The best linear approximation is also called a tangent line.
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Graph of f(t) = t2 with attached tangent line at t = 1.

Limits. Above, we just considered the behavior of the quotient

∆f

∆t
=
f(t+ h)− f(t)

h

as the time interval, h, tends to 0, and we thought of t as being fixed. So, we are
really considering a function of h:

g(h) =
f(t+ h)− f(t)

h
.

The interesting thing about this function g(h) is that it is not defined at the point
we are interested in, i.e., at h = 0. This will always happen when we are interested
in calculating an instantaneous speed. Our task, though, is to find out what g(h) gets
close to as h gets close to 0.
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If f is a really nice function—like most of those with which you are familiar, and
unlike the function g, above—the question “What value does f(x) get close to as x
gets close to 0?” is trivial to answer. For instance, if f(x) = x2 + 2x + 7, then f(x)
gets close to 7 as x gets close to 0. However, we have just seen that when trying to
find the instantaneous change of a function, we must consider functions that are not
quite so nice. For instance, the function g, above, is not even defined when x = 0. So
our first task in this class is to answer the

Main question: What value does f(x) get close to as x gets close to
some given number?

Here are some problems that reveal some of the intricacies involved in answering the
question.

Problem: Consider the function

f(x) =

{
0 if x = 1/10n for n = 1, 2, . . .

3 otherwise.

Is it true that f(x) gets close to 3 as x gets close to 0? Is it true that limx→0 f(x) = 3?

Problem: Consider the function

f(x) =

{
1 if x > 0

−1 if x < 0.

Is it true that as f(x) gets close to 1 as x get close to 0? Gets close to −1? Is it true
that limx→0 f(x) = 1 or limx→0 f(x) = −1.

At this point, all that is expected is to see that the answer to the question is more
complicated than one might at first suppose. In fact, the following definition precisely
captures the idea we need, no more and no less. It is quite complicated. So we will
need to take some time over the next few lectures to unravel it. It is included here
just to indicate the task ahead of us.

Definition. Let f be a function defined in an open interval containing
a point c, except f might not be defined at the point c, itself. Let L
be a real number. The limit of f(x) as x approaches c is L, denoted
limx→c f(x) = L, if for all ε > 0, there exists δ > 0 such that if x satisfies

0 < |x− c| < δ

then
|f(x)− L| < ε.
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