Math 111 Homework for Friday, Week 13

NOTE: You must show your work for credit on these problems.

PROBLEM 1. Use properties of exponents and the natural logarithm to solve for x:

- (a) $\ln x = e$.
- (b) $e^{x^2-1} 1 = 0.$ (c) $27^x = \frac{9^{2x-1}}{3^{2x}}.$ (d) $\frac{1}{e^{-\ln x}} = 5.$ (e) $e^{\ln 2x} = 12.$

PROBLEM 2. Take the derivatives of the following functions with respect to x:

- (a) $\ln(4x^2 + 3x + 1)$.
- (b) $\ln e^x$.
- (c) $\frac{1}{e^x + e^{-x}}$.
- (d) $xe^{-2/x}$.
- (e) $\ln \sqrt{x}$.

PROBLEM 3. Compute the following indefinite integrals (remembering to add + c):

(a)
$$\int \frac{6x^2}{x^3 + 5} dx.$$

(b)
$$\int \frac{e^x}{1 + e^x} dx.$$

(c)
$$\int \ln(x) dx$$
 (hint: integration by parts with $u = \ln(x)$).
(d) $\int \frac{\ln x}{x} dx$.

(e)
$$\int \frac{\sin(x)}{1 + \cos(x)} dx.$$

PROBLEM 4. We know that $(e^x)' = e^x$ and $\ln'(x) = 1/x$. You can use these facts to find $(2^x)'$. Let $y = 2^x$. We want to compute y' (where the derivative is with respect to x). Taking logs, we get $\ln y = \ln(2^x)$. By a property of the logarithm, we have $\ln 2^x = x \ln(2)$. Hence,

$$\ln y = x \ln(2).$$

Use implicit differentiation to compute y' and express your solution solely in terms of x (i.e., if a y appears in your solution, replace it by 2^x).

PROBLEM 5. Compute the equation of the tangent line to the graph of $y = e^{-3x}$ at the point (0, 1) in the form y = mx + b.