Math 111 Homework for Friday, Week 11

Please show your work for the following computations.

PROBLEM 1. Compute the following definite integrals:

(a)
$$\int_{1}^{8} \sqrt{\frac{2}{x}} dx.$$

(b) $\int_{-\pi/2}^{\pi/2} (2t + \cos(t)) dt.$

PROBLEM 2. Compute the following indefinite integrals using *u*-substitutions. Be explicit about your substitution: u = ?, du = ?. Remember to add +c to get the most general form for an antiderivative, and remember to express your solution in terms of the original variable (not u).

(a)
$$\int 2x(x^2 - 9)^3 dx.$$

(b) $\int t^2(t^3 + 5)^4 dt.$
(c) $\int \sin^5(3\theta) \cos(3\theta) d\theta.$
(d) $\int -4x(1 - 2x^2)^{1/3} dx.$
(e) $\int \frac{x^3}{(1 + x^4)^2} dx.$
(f) $\int \frac{x^3}{\sqrt{1 + x^4}} dx.$
(g) $\int (y + 1)\sqrt{2 - y} dy.$

PROBLEM 3. Compute the following indefinite integrals by parts. Be explicit with your substitutions: u = ?, dv = ? (and remember to add +c).

(a)
$$\int 3t \cos(2\pi t) dt$$
.
(b) $\int (4+3x)e^x dx$.

PROBLEM 4. We would like to prove that $\ln(xy) = \ln(x) + \ln(y)$ for all x > 0and y > 0.

- (a) As a warm up, compute the derivatives of the following functions using the chain rule and the fact that $(\ln(x))' = 1/x$.
 - (i) $\ln(4x)$.
 - (ii) $\ln(x^2 + x + 3)$.
- (b) Now fix y > 0 and define a function of just the variable x by

$$f(x) = \ln(xy).$$

- (i) Prove that f'(x) = 1/x using the chain rule. (Recall that y is a constant.)
- (ii) Since $f'(x) = (\ln(x))'$, these two functions must differ by some constant c:

$$f(x) = \ln(x) + c.$$

Evaluate f at 1 to determine the value of c and establish the result we are trying to prove. (Recall the definition of f.)