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Math 111

November 30, 2022



Today

Differential equations:
I Warm-up
I Population models I



Warm-up

Solve:
y ′ = 3t

y .

It separable:
yy ′ = 3t.

Integrate: ∫
y(t)y ′(t) dt =

∫
3t dt.

Result:
y(t)2 = 3t2 + c.

The solution for which y(0) = 5 is

y(t)2 = 3t2 + 25.



Warm-up

Solve:
y ′ = 3t

y .

It separable:
yy ′ = 3t.

Integrate: ∫
y(t)y ′(t) dt =

∫
3t dt.

Result:
y(t)2 = 3t2 + c.

The solution for which y(0) = 5 is

y(t)2 = 3t2 + 25.



Warm-up

Solve:
y ′ = 3t

y .

It separable:
yy ′ = 3t.

Integrate: ∫
y(t)y ′(t) dt =

∫
3t dt.

Result:
y(t)2 = 3t2 + c.

The solution for which y(0) = 5 is

y(t)2 = 3t2 + 25.



Warm-up

Solve:
y ′ = 3t

y .

It separable:
yy ′ = 3t.

Integrate: ∫
y(t)y ′(t) dt =

∫
3t dt.

Result:
y(t)2 = 3t2 + c.

The solution for which y(0) = 5 is

y(t)2 = 3t2 + 25.



Warm-up

Solve:
y ′ = 3t

y .

It separable:
yy ′ = 3t.

Integrate: ∫
y(t)y ′(t) dt =

∫
3t dt.

Result:
y(t)2 = 3t2 + c.

The solution for which y(0) = 5 is

y(t)2 = 3t2 + 25.



Exponential growth and decay model

y(t) = size of population at time t

Model to investigate: the rate of growth of the population is
proportional to the size of the population:

y ′(t) = ky(t).

Solution:
y(t) = aekt

where a = y(0) is the initial population size.
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Exponential growth model

y(t) = aekt , a = y(0)

Question: At what time does the population double?

Answer:
t = ln(2)

k .

Inversely, proportional to k.
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Population model based on Newton’s law of cooling

Now consider the population growth model

y ′(t) = r(S − y(t))

where r and S are positive constants.

Questions:
I When is the population increasing? Decreasing?

Answer: Increasing whenever y(t) < S, and decreasing
whenever y(t) > S.

I What is the long-term behavior of the population?

Answer: The population should stabilize at S

I How could this be a model for heating/cooling?
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Population model based on Newton’s law of cooling

Solve y ′(t) = r(S − y(t)).

It’s separable:

y ′(t) = r(S − y(t)) ⇒ y ′(t)
S − y(t) = r

⇒
∫ y ′(t)

S − y(t) dt =
∫

r dt

⇒
∫ y ′(t)

S − y(t) dt = rt + c
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Population model based on Newton’s law of cooling

We have, ∫ y ′(t)
S − y(t) dt = rt + c. (?)

To integrate the LHS, substitute u = S − y(t). Then
du = − y ′(t) dt. Therefore,∫ y ′(t)

S − y(t) dt = −
∫ du

u = − ln(u) = − ln(S − y(t)).

Equation (?) becomes:

− ln(S − y(t)) = rt + c.
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Population model based on Newton’s law of cooling

We now solve for y(t).

First,

− ln(S − y(t)) = rt + c ⇒ ln(S − y(t)) = −rt − c.

Exponentiate both sides of the equation:

S − y(t) = e−rt−c = e−rte−c = ae−rt

where a = e−c , a positive constant. Now solve for y(t):

y(t) = S − 1
ae−rt .

Sanity check: what happens as t →∞?
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Population model based on Newton’s law of cooling

Let’s write the solution

y(t) = S − 1
ae−rt ,

in terms of the initial condition I := y(0):

I = y(0) = S − 1
ae0 = S − 1

a .

Solve for a:
a = 1

S − I .

Substitute for a in our solution:

y(t) = S + (I − S)e−rt .

Does this solution make sense?
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Population model based on Newton’s law of cooling
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Graph of y(t) = S + (I − S)e−rt with S = 100, I = 50, and r = 1.



Population model based on Newton’s law of cooling
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Graph of y(t) = S + (I − S)e−rt with S = 100, I = 150, and r = 1.


