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yy' =3t
Integrate:

/y(t)y’(t) dt = /3tdt.

Result:

y(t)? =3t +c.

The solution for which y(0) =5 is

y(t)? = 3t% + 25.
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Exponential growth and decay model

y(t) = size of population at time t

Model to investigate: the rate of growth of the population is
proportional to the size of the population:

Solution:
y(t) = ae'

where a = y(0) is the initial population size.
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Exponential growth model

y(t) = aekt, a=y(0)

Question: At what time does the population double?

Answer:
In(2)

t =
k

Inversely, proportional to k.
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Population model based on Newton's law of cooling

Now consider the population growth model

y'(t) = r(S —y(t))
where r and S are positive constants.

Questions:
» When is the population increasing? Decreasing?
ANSWER: Increasing whenever y(t) < S, and decreasing
whenever y(t) > S.

» What is the long-term behavior of the population?

ANSWER: The population should stabilize at S

» How could this be a model for heating/cooling?
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Population model based on Newton's law of cooling

Solve y'(t) = r(S — y(t)). It's separable:

v _
S —y(t)

N /sy_/(ytzt) dt:/rdt

y)
= /S_y(t)dt—rt—l—c

y(t)=r(S—y(t) =
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We have, )
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Population model based on Newton's law of cooling

We have, )
y'(t _
/5—_)/(t)dt_rt+c (‘k)

To integrate the LHS, substitute u = S — y(t). Then
du = — y'(t) dt. Therefore,

y'(t) _ du
s_y(t)df—‘/u—



Population model based on Newton's law of cooling

We have,

) dt =rt+c. (%)

To integrate the LHS, substitute u = S — y(t). Then
du = — y'(t) dt. Therefore,

Sy (;) /— —In(u) = —In(S — y(t)).
Equation (x) becomes:

—In(S —y(t)) =rt+c.
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We now solve for y(t). First,
—In(S—y(t))=rt+c = In(S—y(t))=—-rt—c.
Exponentiate both sides of the equation:

S y(t) — et — g teC — gt

c

where a = ™€, a positive constant. Now solve for y(t):

_ 1 —rt
y(t)=S5— Je

Sanity check: what happens as t — o0?
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Population model based on Newton's law of cooling

Let's write the solution
1
y(t)=5- e,
a

in terms of the initial condition / := y(0):

1 1
y(0) =S S€ ) p

Solve for a: )
a=—.
S—1
Substitute for a in our solution:

y(t) =S+ (I—S)e .

Does this solution make sense?
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Graph of y(t) =S+ (I — S)e " with S =100, / = 150, and r = 1.



