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Today

I Logistic model for population growth.



Logistic growth model

P(t) = size of a population at time t

The logistic growth model is

P ′(t) = rP(t)
(

1− P(t)
K

)
.

I When is the population increasing? decreasing?
I What if P(t) is very small?
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Solution.

Goal: solve the logistic growth differential equation for P.

The equation is separable:

P ′(t) = rP(t)
(

1− P(t)
K

)
⇒ P ′(t)

P(t)
(

1− P(t)
K

) = r .

We need a new technique now. It’s called the method of partial
fractions.

The idea is to find constants A and B such that

1
P(t)

(
1− P(t)

K

) = A
P(t) + B

1− P(t)
K

.
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Solution

1
P(t)

(
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K

) = A
P(t) + B

1− P(t)
K

Get a common denominator for the RHS:

A
P(t) + B(t)
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=
A
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Solution
Since,

1
P(t)

(
1− P(t)

K

) =
A
(

1− P(t)
K

)
+ BP(t)

P(t)
(

1− P(t)
K

)

we must have

1 = A
(

1− P(t)
K

)
+ BP(t) = A− A

K P(t) + BP(t).

Gather terms involving P:

1 = A +
(
−A

K + B
)

P(t).

We get an equality for all t if

A = 1 and − A
K + B = 0.

So A = 1 and B = 1
K .
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Solution

Back to solving the differential equation:

P ′(t) = rP(t)
(

1− P(t)
K

)
⇒ P ′(t)

P(t)
(

1− P(t)
K

) = r

⇒
∫ P ′(t)

P(t)
(

1− P(t)
K

) dt =
∫

r dt

⇒
∫ P ′(t)

P(t)
(

1− P(t)
K

) dt = rt + c.

Now compute the LHS using our partial fraction decomposition.
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We have found that
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Solution

We are left with the integral

1
K

∫ P ′(t)
1− P(t)

K
dt

Let u = 1− P(t)/K . Then du = − 1
K P ′(t) dt. Substituting, we

have

1
K

∫ P ′(t)
1− P(t)

K
dt = −

∫ du
u

= − ln(u) + constant

= − ln
(

1− P(t)
K

)
+ constant.
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Solution

Putting this all together

ln P(t)− ln
(

1− P(t)
K

)
= ln P(t) + ln

((
1− P(t)

K

)−1)

= ln
(

P(t)
(

1− P(t)
K

)−1)

= rt + constant.

Exponentiate both sides to get

P(t)
(

1− P(t)
K

)−1
= erteconstant = aert

for some positive constant a.
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Solution

P(t)
(

1− P(t)
K

)−1
= aert

We need to solve this equation for P(t):

aert = P(t)
(

1− P(t)
K

)−1
= KP(t)

K − P(t)

⇒ aert(K − P(t)) = KP(t)

⇒ aKert − aertP(t) = KP(t)

⇒ aKert = (aert + K )P(t)

⇒ P(t) = aKert

aert + K ⇒ P(t) = aK
a + Ke−rt .
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Solution

We would like to express the arbitrary constant a in terms of the
initial population:

P(0) = aK
a + Ke0 = aK

a + K

⇒ P(0)(a + K ) = aK

⇒ P(0)K = a(K − P(0))

a = P(0)K
K − P(0) .
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Solution.
Substituting this expression for a and simplifying gives the final
form for the solution

P(t) = P(0)K
P(0) + (K − P(0))e−rt .
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Graph of P(t) with K = 1000 and P(0) = 10 and two different
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More on partial fractions

When trying to integrate a function that appears as a fraction, first
check if the derivative of the denominator is in the numerator.

If not, can you factor the denominator? If so, the technique of
partial fractions may apply.

Example. Compute the indefinite integral∫ x
x2 − 1 dx .

The derivative of the denominator is 2x , which is in the numerator
(up to a constant).

This integral can be handled with the substitution u = x2 − 1.
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This time the derivative of the denominator does not appear in the
numerator. Does the denominator factor? Yes:
x2 − 1 = (x + 1)(x − 1). So try partial fractions.
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x2 − 1 = 1

(x + 1)(x − 1) = A
x + 1 + B

x − 1 .

The problem is to find the constants A and B.
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More on partial fractions

If
1

x2 − 1 = A
x + 1 + B

x − 1

= A(x − 1) + B(x + 1)
(x + 1)(x − 1) ,

then comparing numerators on both sides, we must have, for all x ,

1 = A(x + 1) + B(x − 1).

Set x = 1 to get rid of the second term:

1 = A(1 + 1) + B(1− 1) = 2A ⇒ A = 1
2 .

Now set x = −1 to get rid of the first term:

1 = A(−1 + 1) + B(−1− 1) = −2B ⇒ B = −1
2 .
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More on partial fractions

Finally, ∫ 1
x2 − 1 dx =

∫ 1/2
x + 1 + −1/2

x − 1 dx

= 1
2

∫ 1
x + 1 dx − 1

2

∫ 1
x − 1 dx

= 1
2 ln(x + 1)− 1

2 ln(x − 1) + c

= 1
2(ln(x + 1)− ln(x − 1)) + c

= 1
2 ln

(x + 1
x − 1

)
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