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Definition of the integral

Partition of [a, b]: P = {t0, t1, . . . , tn}

subintervals: [ti−1, ti ]

rectangle heights: Mi = lub f ([ti−1, ti ]), mi = glb f ([ti−1, ti ])

upper sum: U(f ,P) =
∑n

i=1 Mi (ti − ti−1)
lower sum: L(f ,P) =

∑n
i=1 mi (ti − ti−1)

upper integral: U
∫

f = glb{U(f ,P) : P a partition of [a, b]}
lower integral: L

∫
f = lub{L(f ,P) : P a partition of [a, b]}

Definition: f is integrable if U
∫

f = L
∫

f , in which case∫ b

a
f := U

∫
f = L

∫
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FTC

If g ′ = f , then∫ b

a
f (x) dx =

∫ b

a
g ′(x) dx = g(b)− g(a).

Examples.

1.
∫ 1

0
2x dx =

∫ 1

0
(x2)′ dx = x2 ∣∣1

0 = 12 − 02 = 1.

2.
∫ 2

0
x2 dx =

∫ 2

0

(1
3x3

)′
dx = 1

3x3 ∣∣2
0 = 1

323 − 1
303 = 8

3 .

3.
∫ π/2

0
cos(x) dx =

∫ π/2

0
sin′(x) dx = sin(x)

∣∣π/2
0 =

sin(π/2)− sin(0) = 1.
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FTC: If g ′ = f , then∫ b

a
f (x) dx =

∫ b

a
g ′(x) dx = g(b)− g(a).

Start of proof:

partition of [a, b]: P = {t0, . . . , tn}.
subintervals: [ti−1, ti ] for i = 1, . . . n.

Apply the Mean Value Theorem to g(x) on each subinterval
[ti−1, ti ]:
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Mean value theorem

Mean Value Theorem (MVT). Let f be a continuous function
on [a, b] and differentiable on (a, b). Then there exists a number c
with a < c < b such that

f ′(c) = f (b)− f (a)
b − a .

c b

(b, f (b))

(a, f (a))

a
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Apply the Mean Value Theorem to g(x) on each subinterval
[ti−1, ti ].

For each i = 1, . . . , n, we get ci ∈ [ti−1, ti ] such that

g ′(ci ) = g(ti )− g(ti−1)
ti − ti−1
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FTC

For each i = 1, . . . , n, we have ci ∈ [ti−1, ti ] such that

g ′(ci ) = g(ti )− g(ti−1)
ti − ti−1

.

Why is it true that for each i ,

f (ci )(ti − ti−1) = g(ti )− g(ti−1)?

Answer: We are assuming that g ′ = f .

Note to self: record this last equation on the blackboard.



FTC

For each i = 1, . . . , n, we have ci ∈ [ti−1, ti ] such that

g ′(ci ) = g(ti )− g(ti−1)
ti − ti−1

.

Why is it true that for each i ,

f (ci )(ti − ti−1) = g(ti )− g(ti−1)?

Answer: We are assuming that g ′ = f .

Note to self: record this last equation on the blackboard.



FTC

For each i = 1, . . . , n, we have ci ∈ [ti−1, ti ] such that

g ′(ci ) = g(ti )− g(ti−1)
ti − ti−1

.

Why is it true that for each i ,

f (ci )(ti − ti−1) = g(ti )− g(ti−1)?

Answer: We are assuming that g ′ = f .

Note to self: record this last equation on the blackboard.



FTC

For each i = 1, . . . , n, we have ci ∈ [ti−1, ti ] such that

g ′(ci ) = g(ti )− g(ti−1)
ti − ti−1

.

Why is it true that for each i ,

f (ci )(ti − ti−1) = g(ti )− g(ti−1)?

Answer: We are assuming that g ′ = f .

Note to self: record this last equation on the blackboard.



FTC

Let Mi = lub f ([ti−1, ti ]) and mi = glb(f ([ti−1, ti ]), as usual.

It follows that mi ≤ f (ci ) ≤ Mi . and, therefore,

mi (ti − ti−1) ≤ f (ci )(ti − ti−1) ≤ Mi (ti − ti−1).

Summing over i ,

L(f ,P) ≤
n∑

i=1
f (ci )(ti − ti−1) ≤ U(f ,P).

Using the recorded equation, we get

L(f ,P) ≤
n∑

i=1
(g(ti )− g(ti−1)) ≤ U(f ,P).
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We have just seen that

L(f ,P) ≤
n∑

i=1
(g(ti )− g(ti−1)) ≤ U(f ,P).

The sum
∑n

i=1(g(ti )− g(ti−1)) is telescoping. It is equal to

(g(t1)− g(t0)) + (g(t2)− g(t1)) + (g(t3)− g(t2)) + · · ·

· · ·+ (g(tn−1)− g(tn−2)) + (g(tn)− g(tn−1))

= g(tn)− g(t0)

= g(b)− g(a).

So
L(f ,P) ≤ g(b)− g(a) ≤ U(f ,P).
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