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Proof of the Fundamental Theorem of Calculus.
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Definition of the integral

Partition of [a, b]: P = {to, t1,...,tn}
subintervals: [tj_1, ti]
rectangle heights: M; = lub f([ti—1,t]), m; = glbf([ti-1,t])

upper sum: U(f,P) =>"1 Mi(t; — ti—1)
lower sum: L(f,P) =11 mi(ti — ti—1)

upper integral: U[f = glb{U(f,P) : P a partition of [a, b]}
lower integral: L[f = lub{L(f,P): P a partition of [a, b]}

Definition: f is integrable if U[f = L[f, in which case

/abf::U/f:L/f.
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If g/ = f, then

/ab f(x)dx = /abg'(x) dx = g(b) — g(a).

Examples.

1 1
— 2y g 211 12 g2 _
1./02xdx—/0(x)dx—x|0—1—0—

2 3 3 3 3
2. /O x“dx = /0 (3X ) dx = §X |0 = §2 — 50 = -

/2 w/2
3. cos(x) dx = sin’(x) dx = sin(x) =

0 0
sin(r/2) —sin(0) = 1.
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FTC: If g/ = f, then

[ f09ax= [ g/ b = a(6) - 8(2).

Start of proof:
partition of [a, b]: P = {to,...,tn}.
subintervals:  [tj_1,t]] for i=1,...n.

Apply the Mean Value Theorem to g(x) on each subinterval
[ti—1, ti]:



Mean value theorem

Mean Value Theorem (MVT). Let f be a continuous function
on [a, b] and differentiable on (a, b). Then there exists a number ¢
with a < ¢ < b such that

b, f(b))

(a,f(a

=
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FTC: If g/ = f, then

‘/a.b f(x)dx = '/:g'(x) dx = g(b) — g(a).

partition of [a, b]: P = {to,...,tn}.

subintervals:  [ti_1,t] fori=1,...n.

Apply the Mean Value Theorem to g(x) on each subinterval
[ti—1,t]. Foreach i=1,...,n, we get ¢; € [tj_1, t;] such that

/ _ g(ti) —g(ti-1)
g'(ci) = ﬁ
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For each i =1,...,n, we have ¢; € [tj_1, t;] such that
ti) — glti—
g/(ci):g( l) g(l 1).
ti—ti—1

Why is it true that for each i,
fci)(ti — ti-1) = g(ti) — g(ti-1)?
Answer: We are assuming that g’ = f.

Note to self: record this last equation on the blackboard.
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Let M; = lub f([t,'_l, t,']) and m; = glb(f([t,-_l, t,']), as usual.

It follows that m; < f(c;) < M;. and, therefore,
mj(t; — ti—1) < f()(ti — ti—1) < Mi(ti — tiz1).

Summing over i,

n

L(f, P) < Z f(C;)(t,' — t,'_l) < U(f, P)

i=1

Using the recorded equation, we get

L(f,P) < Z g(ti—1)) < U(f, P).
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We have just seen that

L(FP) <3 (e(t) — g(ti1)) < U(F, P).
i=1

The sum Y71 (g(t;) — g(ti—1)) is telescoping. It is equal to

(g(t1) — g(t0)) + (g(t2) — g(t1)) + (g(ts) — g(t2)) + -
-+ (g(tn-1) — g(ta—2)) + (&(tn) — g(tn-1))
= g(tn) — g(to)
= g(b) — g(a).



FTC

We have just seen that

L(FP) <3 (e(t) — g(ti1)) < U(F, P).
i=1

The sum Y71 (g(t;) — g(ti—1)) is telescoping. It is equal to

(g(t1) — g(t0)) + (g(t2) — g(t1)) + (g(ts) — g(t2)) + -
o+ (g(tn-1) — &(tn—2)) + (g(tn) — g(ta-1))
= g(tn) — g(to)
= g(b) — g(a).

So
L(f, P) < g(b) — g(a) < U(f, P).
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We have just shown that
for all partitions P. So g(b) — g(a) is an upper bound for all lower

sums. On the other hand, the lower integral Lfab f is, by definition
the least upper bound for all lower sums Therefore,

" < a6) - (a)

Similarly, g(b) — g(a) is a lower bound for all upper sums, and
Ufab f is the greatest lower bound for all upper sums. Therefore,

g(b) —g(a) < U ’f
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We have . .
L/ f§g(b)—g(a)§u/ f.
a a

Since f is integrable,
b b b
L/ f:U/ f:/ F(x) dx.

[ 1) = 5(6) ~ (0).

Therefore,



