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I The mean value theorem.
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Mean value theorem

Suppose you drive through two toll booths that are 100 miles
apart.

Your time is recorded at each booth, and it is determined
that it took you 1 hour to travel that distance. Further, suppose
your speed is recorded for the first and last miles and is found to
be under 40 mph. Nevertheless, why would it be reasonable for you
to be issued a ticket?

What would the graph of distance versus time look like?

Are we certain that your speed was exactly 100 mph at some
point?



Mean value theorem

Suppose you drive through two toll booths that are 100 miles
apart. Your time is recorded at each booth, and it is determined
that it took you 1 hour to travel that distance.

Further, suppose
your speed is recorded for the first and last miles and is found to
be under 40 mph. Nevertheless, why would it be reasonable for you
to be issued a ticket?

What would the graph of distance versus time look like?

Are we certain that your speed was exactly 100 mph at some
point?



Mean value theorem

Suppose you drive through two toll booths that are 100 miles
apart. Your time is recorded at each booth, and it is determined
that it took you 1 hour to travel that distance. Further, suppose
your speed is recorded for the first and last miles and is found to
be under 40 mph.

Nevertheless, why would it be reasonable for you
to be issued a ticket?

What would the graph of distance versus time look like?

Are we certain that your speed was exactly 100 mph at some
point?



Mean value theorem

Suppose you drive through two toll booths that are 100 miles
apart. Your time is recorded at each booth, and it is determined
that it took you 1 hour to travel that distance. Further, suppose
your speed is recorded for the first and last miles and is found to
be under 40 mph. Nevertheless, why would it be reasonable for you
to be issued a ticket?

What would the graph of distance versus time look like?

Are we certain that your speed was exactly 100 mph at some
point?



Mean value theorem

Suppose you drive through two toll booths that are 100 miles
apart. Your time is recorded at each booth, and it is determined
that it took you 1 hour to travel that distance. Further, suppose
your speed is recorded for the first and last miles and is found to
be under 40 mph. Nevertheless, why would it be reasonable for you
to be issued a ticket?

What would the graph of distance versus time look like?

Are we certain that your speed was exactly 100 mph at some
point?



Mean value theorem

Suppose you drive through two toll booths that are 100 miles
apart. Your time is recorded at each booth, and it is determined
that it took you 1 hour to travel that distance. Further, suppose
your speed is recorded for the first and last miles and is found to
be under 40 mph. Nevertheless, why would it be reasonable for you
to be issued a ticket?

What would the graph of distance versus time look like?

Are we certain that your speed was exactly 100 mph at some
point?



Mean value theorem

c b

(b, f (b))

(a, f (a))

a

Find an equation expressing what you see about slopes of lines:

f ′(c) = f (b)− f (a)
b − a .
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Mean value theorem

Mean Value Theorem (MVT). Let f be a continuous function
on [a, b] and differentiable on (a, b). Then there exists a number c
with a < c < b such that

f ′(c) = f (b)− f (a)
b − a .

c b

(b, f (b))

(a, f (a))

a

Mean value theorem (with two possible choices for c).

Proof. Math 112. �



Mean value theorem

Mean Value Theorem (MVT). Let f be a continuous function
on [a, b] and differentiable on (a, b). Then there exists a number c
with a < c < b such that

f ′(c) = f (b)− f (a)
b − a .

Corollary of MVT. Let f be a differentiable function on an open
interval I. Then:

1. If f ′(x) = 0 for all x in I, then f is constant on I.
2. If f ′(x) > 0 for all x in I, then f is strictly increasing on I.
3. If f ′(x) < 0 for all x in I, then f is strictly decreasing on I.

Proofs on the board (and in our notes).
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Review of ln and exp from last week

For x > 0,
ln(x) =

∫ x

1

1
t dt
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Review of ln and exp from last week

Definition. The exponential function, denoted exp(x), is the
inverse of ln(x). In other words,

exp(ln(x)) = ln(exp(x)) = x .
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Review of ln and exp from last week

Logs convert products to sums:

ln(xy) = ln(x) + ln(y).

The exponential converts sums to products:

exp(x + y) = exp(x) exp(y).
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Review of ln and exp from last week

The number e is defined by

exp(1) = e.

We can show that
er = exp(r)

for all rational numbers r .

We define
ex := exp(x)

for all real numbers x .

For real numbers a and x with a > 0, define

ax := ex ln(a) = exp(x ln(a)).

Example. 2π = eπ ln(2) = exp(π ln(2)) ≈ 8.82.
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Question about inverses from last time.

Recall from last time:

Definition. Functions f and g are inverses of each other if

f (g(x)) = x and g(f (x)) = x .

Examples.
I f (x) = 2x and g(x) = x

2 .

I f (x) = x2 and g(x) =
√

x if x ∈ [0,∞).

I f (x) = x2 and g(x) = −
√

x if x ∈ [−∞, 0).

Question: Does f (g(x)) = x imply automatically that
g(f (x)) = x?
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Question about inverses from last time.

Question: Does f (g(x)) = x imply automatically that
g(f (x)) = x?

Answer. No.

Example. Define g : [0, 1]→ R by g(x) = x , and define
f : R→ [0, 1] by

f (x) =
{

x if 0 ≤ x ≤ 1
0 otherwise.

Then for x ∈ [0, 1], we have f (g(x)) = f (x) = x . But
g(f (x)) 6= x , in general. For instance,

g(f (2)) = g(0) = 0.
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Question about inverses from last time.

Example. Consider the operations of differentiation and
integration:

f 7→ f ′ and f 7→
∫ x

0
f (t) dt.

Are these inverse operations? By the integral form of the FTC,(∫ x

0
f (t) dt

)′
= f (x).

So differentiation undoes integration. But the converse does not
hold. For instance, let f (x) = x2 + 2. Then∫ x

0
f ′(t) dt =

∫ x

0
2t dt = t2∣∣x

0 = x2 − 02 = x2 6= f (x).
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