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» Properties of the natural logarithm.

» Differentiation and integration examples using the logarithm.
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FTC Version Il: If

for each x € I, then g’(x) = f(x) for each x € I.
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In(x) = /1X E dt.

t

Property 1.
1
In'(x) = —.
W) =

Proof. This follows directly from FTC2:

Gy = ([ 1ar) T2 L
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Property 2. In(x) is an increasing function (i.e., it has positive
slope) and its graph is concave down.

Proof.

Increasing: In'(x) = 1 > 0.

Concave down: In"(x) = —% < 0.
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Extension of the definition of the integral

For the next property, recall that we extended the definition of
fab f(x) dx to include the case where a < b:

1. / f(x)dx = 0.
2. If a> b, then [P f(x)dx = — [7 f(x) dx.
Example.

3 3
2 X
dx = =
/OXX 3

3 0 3
=9 and / x2dx:—/ x% dx = —9.
0 3 0
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Properties of In(x)

Property 3.
<0 for0<x<1
In(x) =0 forx=1
>0 forx>1.

Proof. These properties all follow directly from the definition

In(x):/lxidt

and the fact that % > 0 for t > 0. For instance, when 0 < x < 1,

X 1
In(x):/ 1dt:—/ 1dt<0.
1t x t
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Properties of In(x)

Property 5. For x > 0 and y > 0, we have

In(xy) = In(x) + In(y).

Proof. Homework. O
Trivial example:
In(1) =In(1-1) =In(1) +In(1)

So In(1) = In(1) 4 In(1). Subtracting In(1) from both sides shows
that In(1) = 0, consistent with what we already know.
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=nlin(x) for n=10,1,2,...

Property 6. In(x")

3In(x)
41n(x),
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Properties of In(x)

Property 6. In(x") = nlIn(x) for n=10,1,2,...

Proof.
In(x%) = In(1) =0=10-1In(x)
In(x!) = In(x) = 1-In(x)
In(x?) = In(x - x) = In(x) + In(x) = 21In(x)
In(x®) = In(x - x?) = In(x) 4 In(x?) = In(x) + 2In(x) = 3In(x)
In(x*) = In(x - x3) = In(x) + In(x®) = In(x) + 3In(x) = 4In(x),

and so on. Formally, one would prove the complete result using
induction. O
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Properties of In(x)

Property 7. In(x™") = —nln(x) for n =1,2, ...

Proof. Let n be a positive integer. We have x" - x7" = 1.
Therefore,

0=In(1) =In(x"-x"") =In(x") + In(x~") = nIn(x) + In(x~").

So nin(x) 4+ In(x~") = 0, and the result follows.
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Property 8. For every real number «, we have In(x%*) = a/In(x).

Proof. We have proved the result for o any integer. For arbitrary
real numbers, see Math 112. The problem is knowing the
definition of x® when « is an arbitrary real number. O
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Property 9. In (;) = In(x) — In(y).

Proof. Homework.
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Properties of In(x)

Property 10. (x) = 0.

i
Proof. As a special case of In(x") = nin(x), take x = 2. We get,
In(2") = nIn(2).

We know that In(2) > 0. Hence,

: mo _ : _
nIer;OIn(2 ) = nlngonln(2) =In(2) nILngo n=oo.
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Examples

Problem 1. Compute the derivative:

(In(\/ x3 4+ 2x)>/

Problem 2. Compute the antiderivative:
/ X dx.
x2+4

Problem 3. Compute the antiderivative:

/tan 0 do.

See our lecture notes for solutions.




