
;

Math 111

November 16, 2022



Today

I Properties of the natural logarithm.
I Differentiation and integration examples using the logarithm.
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FTC

Recall our two versions of the fundamental theorem of calculus:

FTC Version I:
∫ b

a g ′(x) dx = g(b)− g(a).

FTC Version II: If
g(x) =

∫ x

a
f (t) dt

for each x ∈ I, then g ′(x) = f (x) for each x ∈ I.
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Definition

Recall the definition of the natural logarithm from last time:

Definition. For x > 0, the natural logarithm is

ln(x) =
∫ x

1

1
t dt.

Property 1.
ln′(x) = 1

x .

Proof. This follows directly from FTC2:

(ln(x))′ =
(∫ x

1

1
t dt

)′ FTC2= 1
x .
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Properties of ln(x)

Property 2. ln(x) is an increasing function (i.e., it has positive
slope) and its graph is concave down.

Proof.

Increasing: ln′(x) = 1
x > 0.

Concave down: ln′′(x) = − 1
x2 < 0.
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Extension of the definition of the integral

For the next property, recall that we extended the definition of∫ b
a f (x) dx to include the case where a < b:

1.
∫ a

a
f (x) dx = 0.

2. If a > b, then
∫ b

a f (x) dx = −
∫ a

b f (x) dx .

Example.∫ 3

0
x2 dx = x3

3

∣∣∣∣3
0

= 9 and
∫ 0

3
x2 dx = −

∫ 3

0
x2 dx = −9.
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Properties of ln(x)

Property 3.

ln(x)


< 0 for 0 < x < 1
= 0 for x = 1
> 0 for x > 1.

Proof. These properties all follow directly from the definition

ln(x) =
∫ x

1

1
t dt

and the fact that 1
t > 0 for t > 0. For instance, when 0 < x < 1,

ln(x) =
∫ x

1

1
t dt = −

∫ 1

x

1
t dt < 0.
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Properties of ln(x)

Property 4. The graph of ln(x):
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Properties of ln(x)

Property 5. For x > 0 and y > 0, we have

ln(xy) = ln(x) + ln(y).

Proof. Homework. �

Trivial example:

ln(1) = ln(1 · 1) = ln(1) + ln(1)

So ln(1) = ln(1) + ln(1). Subtracting ln(1) from both sides shows
that ln(1) = 0, consistent with what we already know.
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Properties of ln(x)

Property 6. ln(xn) = n ln(x) for n = 0, 1, 2, . . .

Proof.

ln(x0) =

ln(1) = 0 = 0 · ln(x)

ln(x1) = ln(x) = 1 · ln(x)
ln(x2) = ln(x · x) = ln(x) + ln(x) = 2 ln(x)
ln(x3) = ln(x · x2) = ln(x) + ln(x2) = ln(x) + 2 ln(x) = 3 ln(x)
ln(x4) = ln(x · x3) = ln(x) + ln(x3) = ln(x) + 3 ln(x) = 4 ln(x),

and so on. Formally, one would prove the complete result using
induction. �
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Properties of ln(x)

Property 7. ln(x−n) = −n ln(x) for n = 1, 2, . . .

Proof. Let n be a positive integer. We have xn · x−n = 1.
Therefore,

0 = ln(1) = ln(xn · x−n) = ln(xn) + ln(x−n) = n ln(x) + ln(x−n).

So n ln(x) + ln(x−n) = 0, and the result follows. �
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Properties of ln(x)

Property 8. For every real number α, we have ln(xα) = α ln(x).

Proof. We have proved the result for α any integer. For arbitrary
real numbers, see Math 112. The problem is knowing the
definition of xα when α is an arbitrary real number. �
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Properties of ln(x)

Property 9. ln
(x

y

)
= ln(x)− ln(y).

Proof. Homework. �



Properties of ln(x)

Property 9. ln
(x

y

)
= ln(x)− ln(y).

Proof. Homework. �



Properties of ln(x)

Property 10. lim
x→∞

ln(x) =∞.

Proof. As a special case of ln(xn) = n ln(x), take x = 2. We get,

ln(2n) = n ln(2).

We know that ln(2) > 0. Hence,

lim
n→∞

ln(2n) = lim
n→∞

n ln(2) = ln(2) lim
n→∞

n =∞.
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Examples

Problem 1. Compute the derivative:(
ln(
√

x3 + 2x)
)′

Problem 2. Compute the antiderivative:∫ x
x2 + 4 dx .

Problem 3. Compute the antiderivative:∫
tan θ dθ.

See our lecture notes for solutions.
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