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» Short quiz.
» Integration by parts example.
» Second version of fundamental theorem of calculus.

» Definition of the natural logarithm.



Quiz

» Let f be a function defined in an open interval about real
number c. What is the definition of the derivative, f'(c)?

» Suppose f(x) = 3x? + 5. Use the definition of the derivative
to compute f/(2).
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Quiz solution

Let f be a function defined in an open interval about real
number c¢. What is the definition of the derivative, f'(c)?

Solution. The derivative is defined by

F(c) = Ili_% f(c—i—h/))— f(c).
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Suppose f(x) = 3x2 + 5. Use the definition of the derivative to
compute f'(2).
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Quiz solution

Suppose f(x) = 3x2 + 5. Use the definition of the derivative to
compute f'(2).

Solution. We have

F(2+ h) — F(2)

f'(2) = lim

h—0 h

. (3(2+h)?>+5)—(3-22+5)
= lim

h—0 h
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Integration by parts example

Recall the formula for integration by parts:
/udv: uv—/vdu.

To compute the indefinite integral

/ex cos(x) dx,

take
u=-e~ du = e* dx
dv = cos(x) dx v = sin(x).
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Integration by parts example

u=e* du = " dx
dv = cos(x) dx v = sin(x).

/ex cos(x) dx = /udv
:uv—/vdu

= e*sin(x) — /eX sin(x) dx

To proceed we need to compute

/ e*sin(x) dx.
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Integration by parts example

Integrate [ e*sin(x) dx by parts:

u=e* du = X dx
dv =sin(x) dx v = — cos(x).
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Integration by parts example

Integrate [ e*sin(x) dx by parts:

u=e* du = X dx
dv =sin(x) dx v = — cos(x).

We get

/ e*sin(x) dx = —e* cos(x) + / e* cos(x) dx.

It looks like we've gone around in circles, but checking carefully. ..
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Integration by parts example

/eX cos(x) dx = € sin(x) — /ex sin(x) dx
= &*sin(x) — (—e* cos(x) + / e* cos(x) dx)

= €”sin(x) + € cos(x) — /eX cos(x) dx.



Integration by parts example

/ex cos(x) dx = € sin(x) — /ex sin(x) dx
= &*sin(x) — (—e* cos(x) + / e* cos(x) dx)
= &*sin(x) + €* cos(x) — /eX cos(x) dx.

Therefore,



Integration by parts example

/ex cos(x) dx = e* sin(x) — /eX sin(x) dx
— ¥ sin(x) — (—e* cos(x) + / e cos(x) dx)
— & sin(x) + e~ cos(x) — / & cos(x) dx.
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Integration by parts example

/ex cos(x) dx = e* sin(x) — /eX sin(x) dx
— ¥ sin(x) — (—e* cos(x) + / e cos(x) dx)
— & sin(x) + e~ cos(x) — / & cos(x) dx.
Therefore,

2 / e* cos(x) dx = €*sin(x) + € cos(x) = (sin(x) + cos(x))e*.



Integration by parts example

/ex cos(x) dx = e* sin(x) — /eX sin(x) dx
— ¥ sin(x) — (—e* cos(x) + / e cos(x) dx)
— & sin(x) + e~ cos(x) — / & cos(x) dx.
Therefore,
2 / & cos(x) dx = € sin(x) + € cos(x) = (sin(x) + cos(x))€".

So )
/ex cos(x) dx = §(sin(x) + cos(x))e™ + c.
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Two versions of the fundamental theorem of calculus

FTC Version I fab g'(x) dx = g(b) — g(a)

FTC Version Il:  Suppose f is a continuous function on an open
interval | containing a point a. Define

gl = [ f(r)dt
for each x € I. Then g’(x) = f(x) for each x € .

Fine point: What does the integral mean when x < a?
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So far, we have only defined fab f(x) dx when a < b.

We extend the definition now, as follows:
1. / f(x)dx = 0.
a
2. If a> b, then [P f(x)dx = — [7 f(x) dx.
Example.

3 3
2 X
d:*
/oXX3

3 0
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3
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Extension of the definition of the integral

So far, we have only defined fab f(x) dx when a < b.

We extend the definition now, as follows:
1. / f(x)dx = 0.
a
2. If a> b, then [P f(x)dx = — [7 f(x) dx.
Example.

3 3
2 X
d:*
/oXX3

3 0 3
—9 and /x2dx:—/ x2dx = —0.
3 0

0
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FTCII

a=[re -

g'(

Example. Let f(x) = x°, and let a = 0.

x) =

f(x).
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FTCII

g(x) = /:f(t)dt ~ ) = F(x).

Example. Let f(x) = x°, and let a = 0.

Then define g by

g(x) = /OX t° dt

Check:
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Example of FTC Il

Let N
b(x) = / e~ t7eos(t) gy
3

Then
B(x) = = e x+eosko),
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The natural logarithm

Consider these functions and their derivatives:

f(x)‘ x73 ‘ x2 ‘X_l‘l‘X‘X2‘X3
Fl(x) | —3x~4| —2x73 | —x72 |0 | 1 | 2x | 3x?
So, forgetting +c,
1 1 1 1 1 1 1
Jat=50 [a%=2a [e%-
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So, forgetting +c,
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The natural logarithm

Consider these functions and their derivatives:

So, forgetting +c,

1 1 1 1 1 1 1
Jat=50 [w%=2m [e®x=

/de:l7 /xdx_;xz, /xzdx_;x?’.

1
Question: What about /f dx?
X



The natural logarithm

Definition. For x > 0, the natural logarithm is

In(x) = /1X E dt.

t



The natural logarithm

Definition. For x > 0, the natural logarithm is

x 1
In(x) :/ —dt.
1t
By FTC Il, it follows that
1
In’(x) =

X .



The natural logarithm

Graph of f(t) = 1.



