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Quiz

I Let f be a function defined in an open interval about real
number c. What is the definition of the derivative, f ′(c)?

I Suppose f (x) = 3x2 + 5. Use the definition of the derivative
to compute f ′(2).
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Solution. The derivative is defined by

f ′(c) = lim
h→0

f (c + h)− f (c)
h .
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Integration by parts example

Recall the formula for integration by parts:∫
u dv = uv −

∫
v du.

To compute the indefinite integral∫
ex cos(x) dx ,

take
u = ex

du = ex dx

dv = cos(x) dx

v = sin(x).
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∫
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∫
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∫
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Therefore,

2
∫
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Two versions of the fundamental theorem of calculus

FTC Version I:
∫ b

a g ′(x) dx = g(b)− g(a)

FTC Version II: Suppose f is a continuous function on an open
interval I containing a point a. Define

g(x) =
∫ x

a
f (t) dt

for each x ∈ I. Then g ′(x) = f (x) for each x ∈ I.

Fine point: What does the integral mean when x < a?
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Extension of the definition of the integral

So far, we have only defined
∫ b

a f (x) dx when a < b.

We extend the definition now, as follows:

1.
∫ a

a
f (x) dx = 0.

2. If a > b, then
∫ b

a f (x) dx = −
∫ a

b f (x) dx .

Example.∫ 3

0
x2 dx = x3

3

∣∣∣∣3
0

= 9 and
∫ 0

3
x2 dx = −

∫ 3

0
x2 dx = −9.
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FTC II

g(x) =
∫ x

a
f (t) dt ⇒ g ′(x) = f (x).

Example. Let f (x) = x5, and let a = 0.
Then define g by

g(x) =
∫ x

0
t5 dt

= 1
6 t6

∣∣∣∣x
t=0

= 1
6x6

.

Check:
g ′(x) =

(1
6x6

)′
= x5 = f (x).
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∫ x

3
e−t2+cos(t) dt.

Then
b′(x) = = e−x2+cos(x).
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The natural logarithm

Consider these functions and their derivatives:

f (x) x−3 x−2 x−1 1 x x2 x3

f ′(x) −3x−4 −2x−3 −x−2 0 1 2x 3x2

So, forgetting +c,∫ 1
x4 dx = −1

3 ·
1
x3 ,

∫ 1
x3 dx = −1

2 ·
1
x2 ,

∫ 1
x2 dx = −1

x ,

∫
0 dx = 1,

∫
x dx = 1

2x2,

∫
x2 dx = 1

3x3.

Question: What about
∫ 1

x dx?
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x4 dx = −1

3 ·
1
x3 ,

∫ 1
x3 dx = −1

2 ·
1
x2 ,

∫ 1
x2 dx = −1

x ,

∫
0 dx = 1,

∫
x dx = 1

2x2,

∫
x2 dx = 1

3x3.

Question: What about
∫ 1

x dx?



The natural logarithm

Definition. For x > 0, the natural logarithm is

ln(x) =
∫ x

1

1
t dt.

By FTC II, it follows that

ln′(x) = 1
x .
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The natural logarithm

ln(x) =
∫ x

1

1
t dt.

1 x t

area = ln(x)

Graph of f (t) = 1
t .


