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The inverse function theorem
Definition. Functions f and g are inverses of each other if

f (g(x)) = x and g(f (x)) = x .

Examples.
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The inverse function theorem
Example.
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One-to-one functions

Definition. A function f is one-to-one if x 6= y
implies f (x) 6= f (y).

Horizontal line test:
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f (x) = x2 fails the horizontal line test on (−∞,∞).
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One-to-one functions

If we restrict f (x) = x2 to be a function on [0,∞), it is one-to-one:
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f (x) = x2 passes the horizontal line test on [0,∞).



One-to-one functions

Proposition. If the function f is one-to-one, it has an inverse.

Example. Considering f (x) = x2 as a function on [0,∞), then it
has an inverse: g(x) =

√
x .
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The inverse function theorem
Theorem. (Inverse function theorem, (IFT).) Suppose f is
differentiable, and suppose f has an inverse g . Then g is
differentiable and

g ′(x) = 1
f ′(g(x))

provided f ′(g(x)) 6= 0.

Partial proof. Suppose g is differentiable.
Since f and g are inverses, we have f (g(x)) = x . Take derivatives
and apply the chain rule:

1 = (x)′ = (f (g(x))′ = f ′(g(x))g ′(x).

So 1 = f ′(g(x))g ′(x). Solve for g ′(x):

g ′(x) = 1
f ′(g(x)) .
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The inverse function theorem

Example. f (x) = x2 and g(x) =
√

x are inverse functions
on [0,∞)

g ′(x) = (x1/2)′ = 1
2x−1/2 = 1

2
√

x .

Compare this with 1/f ′(g(x)). We have f ′(x) = 2x ,
and g(x) =

√
x . So

1
f ′(g(x)) = 1

f ′(
√

x) = 1
2
√
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The exponential function
ln(x)′ = 1/x > 0 for all x > 0

=⇒ ln(x) is always increasing
=⇒ ln(x) is one-to-one =⇒ ln(x) has an inverse function.
Definition. The exponential function, denoted exp(x), is the
inverse of ln(x). In other words,

exp(ln(x)) = ln(exp(x)) = x .
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Properties of the exponential function

Property 1. exp(0) = 1.

Proof. Since ln(1) = 0,

exp(0) = exp(ln(1)).

Since exp(ln(x)) = x for all x > 0

exp(ln(1)) = 1.

Therefore,
exp(0) = exp(ln(1)) = 1.
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Properties of the exponential function

Property 2. exp(x + y) = exp(x) exp(y).

Proof. Recall that ln(xy) = ln(x) + ln(y) for all x , y > 0.
Therefore,

ln(exp(x) exp(y)) = ln(exp(x)) + ln(exp(y)) = x + y .

So ln(exp(x) exp(y)) = x + y . Apply the exp function to both
sides:

exp(ln(exp(x) exp(y))) = exp(x + y).

Use the fact that exp is inverse to ln to get

exp(x) exp(y) = exp(x + y).
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Properties of the exponential function

Property 3. exp′(x) = exp(x).

Proof. This follows from the inverse function theorem, but we can
see it directly from the chain rule:

ln(exp(x)) = x =⇒ (ln(exp(x)))′ = (x)′

=⇒ 1
exp(x) exp′(x) = 1

=⇒ exp′(x) = exp(x).
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The number e

Define the number e by

e = exp(1).

Equivalently, since exp and ln are inverses, ln(e) = 1.

1 e t

area = ln(e) = 1

Graph of f (t) = 1
t .
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The number e

Recall that exp(x + y) = exp(x) exp(y).

Therefore,

exp(2) = exp(1 + 1) = exp(1) exp(1) = e2.

Therefore,

exp(3) = exp(2 + 1) = exp(2) exp(1) = e2 · e = e3.

And so on:
exp(n) = en

for n = 0, 1, 2, . . .
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The number e

Our notes prove that
exp(x) = ex

for all rational numbers (fractions).

Definition. Let x be any real number, and let e = exp(1). Then
we define ex by

ex := exp(x).

Definition. Let a and x be real numbers with a > 0. Then

ax := ex ln(a) = exp(x ln(a)).

Example. 2π = eπ ln(2) ≈ 8.82.
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Exponentiation

Definition. Let a and x be real numbers with a > 0. Then

ax := ex ln(a) = exp(x ln(a)).

Some consequences of the definition:
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I ax+y = axay ,

I (ax )y = axy ,

I
ax
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I ln(ax ) = x ln(a).
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