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» The inverse function theorem (IFT).

» The exponential function.



The inverse function theorem

Definition. Functions f and g are inverses of each other if

f(g(x))=x and g(f(x))=x.
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Examples.

Graphs of inverse functions f(x) = 2x and g(x) = 3x.
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Graphs of inverse functions f(x) = x? and g(x) = /x.



One-to-one functions

Definition. A function f is one-to-one if x # y
implies f(x) # f(y).



One-to-one functions

Definition. A function f is one-to-one if x # y
implies f(x) # f(y).

Horizontal line test:
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f(x) = x? fails the horizontal line test on (—o0, 00).



One-to-one functions

If we restrict f(x) = x2 to be a function on [0, ), it is one-to-one:

051152

f(x) = x? passes the horizontal line test on [0, 00).
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One-to-one functions

Proposition. If the function f is one-to-one, it has an inverse.

Example. Considering f(x) = x?

has an inverse: g(x) = v/x.

as a function on [0, c0), then it
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#00= e
provided '(g(x)) # 0.
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Partial proof. Suppose g is differentiable.
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The inverse function theorem

Theorem. (Inverse function theorem, (IFT).) Suppose f is
differentiable, and suppose f has an inverse g. Then g is

differentiable and 1

#00= e
provided '(g(x)) # 0.

Partial proof. Suppose g is differentiable.
Since f and g are inverses, we have f(g(x)) = x. Take derivatives
and apply the chain rule:

1=(x)" = (f(g(x)) = f'(g(x))g'(x)-
So 1= f(g(x))g’(x). Solve for g’(x):
1

&)= Figtoy
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Example. f(x) = x? and g(x) = v/x are inverse functions
on [0, 00)

1 _
g/(X) — (X1/2)/ _ EX 1/2
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Example. f(x) = x? and g(x) = v/x are inverse functions
on [0, 00)
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Compare this with 1/f'(g(x)).
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The inverse function theorem

Example. f(x) = x? and g(x) = v/x are inverse functions
on [0, 00)

1 1
/ = 1/2/:7 71/2:7

Compare this with 1/f'(g(x)). We have f'(x) = 2x,
and g(x) = /x. So

1 1

f'(g(x)) (V)



The inverse function theorem

Example. f(x) = x? and g(x) = v/x are inverse functions
on [0, 00)

1 1
/ = 1/2/:7 71/2:7

Compare this with 1/f'(g(x)). We have f'(x) = 2x,
and g(x) = /x. So
1 1 1
Fllg(x))  FI(Vx)  2v/x
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The exponential function
In(x)" =1/x > 0 for all x >0 = In(x) is always increasing
= In(x) is one-to-one == In(x) has an inverse function.

Definition. The exponential function, denoted exp(x), is the
inverse of In(x).



The exponential function
In(x)" =1/x > 0 for all x >0 = In(x) is always increasing
= In(x) is one-to-one == In(x) has an inverse function.

Definition. The exponential function, denoted exp(x), is the
inverse of In(x). In other words,

exp(In(x)) = In(exp(x)) = x.



The exponential function

In(x)" =1/x > 0 for all x >0 = In(x) is always increasing
= In(x) is one-to-one == In(x) has an inverse function.

Definition. The exponential function, denoted exp(x), is the
inverse of In(x). In other words,

exp(In(x)) = In(exp(x)) = x.
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Properties of the exponential function

Property 1. exp(0) = 1.
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exp(In(1)) = 1.



Properties of the exponential function

Property 1. exp(0) =

1.
Proof. Since In(1) =0,

exp(0) = exp(In(1)).
Since exp(In(x)) = x for all x >0
exp(In(1)) = 1.

Therefore,
exp(0) = exp(In(1)) = 1.



Properties of the exponential function

Property 2. exp(x + y) = exp(x) exp(y).
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Property 2. exp(x + y) = exp(x) exp(y).
Proof. Recall that In(xy) = In(x) + In(y) for all x,y > 0.
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Properties of the exponential function

Property 2. exp(x + y) = exp(x) exp(y).
Proof. Recall that In(xy) = In(x) + In(y) for all x,y > 0.
Therefore,

In(exp(x) exp(y)) = In(exp(x)) + In(exp(y)) = x + .

So In(exp(x)exp(y)) = x + y. Apply the exp function to both
sides:
exp(In(exp(x) exp(y))) = exp(x +y).

Use the fact that exp is inverse to In to get

exp(x) exp(y) = exp(x + y).
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Properties of the exponential function

Property 3. exp’(x) = exp(x).

Proof. This follows from the inverse function theorem, but we can
see it directly from the chain rule:

In(exp(x)) =x = (In(exp(x)))" = (x)’

exp'(x) =1

1
exp(x)



Properties of the exponential function

Property 3. exp’(x) = exp(x).

Proof. This follows from the inverse function theorem, but we can
see it directly from the chain rule:

In(exp(x)) =x = (In(exp(x)))" = (x)’

xp(x) exp'(x) =1

= exp/(x) = exp(x).
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Define the number e by
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The number e

Define the number e by
e = exp(1).

Equivalently, since exp and In are inverses, In(e) = 1.



The number e

Define the number e by
e = exp(1).

Equivalently, since exp and In are inverses, In(e) = 1.

area =In(e) =1

Graph of f(t) = %



The number e

Recall that exp(x + y) = exp(x) exp(y).



The number e

Recall that exp(x + y) = exp(x) exp(y). Therefore,

exp(2) = exp(1 + 1) = exp(1) exp(1) = €.



The number e

Recall that exp(x + y) = exp(x) exp(y). Therefore,
exp(2) = exp(1 + 1) = exp(1) exp(1) = €.
Therefore,

exp(3) = exp(2 4+ 1) = exp(2) exp(1) = €* - e = €°.



The number e

Recall that exp(x + y) = exp(x) exp(y). Therefore,
exp(2) = exp(1 + 1) = exp(1) exp(1) = €.

Therefore,

exp(3) = exp(2 4+ 1) = exp(2) exp(1) = €* - e = €°.

And so on:
n

exp(n) =e
forn=0,1,2,...
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Our notes prove that
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for all rational numbers (fractions).
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Definition. Let x be any real number, and let e = exp(1). Then

we define e by
X

e* 1= exp(x).
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The number e

Our notes prove that
exp(x) = e*

for all rational numbers (fractions).

Definition. Let x be any real number, and let e = exp(1). Then

we define e by
X

e* 1= exp(x).

Definition. Let a and x be real numbers with a > 0. Then

a = "3 = exp(xIn(a)).

Example. 27 = ¢""(?)



The number e

Our notes prove that
exp(x) = e*

for all rational numbers (fractions).

Definition. Let x be any real number, and let e = exp(1). Then

we define e by
X

e* 1= exp(x).
Definition. Let a and x be real numbers with a > 0. Then

a = "3 = exp(xIn(a)).

Example. 2" = ™" ~ 8.82.



Exponentiation

Definition. Let a and x be real numbers with a > 0. Then

a* = "3 = exp(xIn(a)).



Exponentiation
Definition. Let a and x be real numbers with a > 0. Then

a* = "3 = exp(xIn(a)).

Some consequences of the definition:

For all real numbers x and vy,



Exponentiation

Definition. Let a and x be real numbers with a > 0. Then

a* = "3 = exp(xIn(a)).

Some consequences of the definition:
For all real numbers x and y,

p XY =3,



Exponentiation

Definition. Let a and x be real numbers with a > 0. Then

a* = "3 = exp(xIn(a)).

Some consequences of the definition:
For all real numbers x and y,

p XY =3,

> (a¥) = av,



Exponentiation

Definition. Let a and x be real numbers with a > 0. Then

a* = "3 = exp(xIn(a)).

Some consequences of the definition:
For all real numbers x and y,

p XY =3,



Exponentiation

Definition. Let a and x be real numbers with a > 0. Then

a* = "3 = exp(xIn(a)).

Some consequences of the definition:
For all real numbers x and y,

p XY =3,



