Math 111

November 9, 2022

Today

- Antiderivatives and the fundamental theorem of calculus (FTC).
- ► First properties of the integral.

If g' = f, then g is an *antiderivative* of f.

If g' = f, then g is an *antiderivative* of f.

Example. Let $f(x) = 6x^2$. Find several antiderivatives of f.

If g' = f, then g is an *antiderivative* of f.

Example. Let $f(x) = 6x^2$. Find several antiderivatives of f. The antiderivatives of f are exactly functions of the form

 $2x^{3} + c$

where $c \in \mathbb{R}$.

$$\int_{a}^{b} f(x) \, dx$$

$$\int_a^b f(x) \, dx = \int_a^b g'(x) \, dx$$

$$\int_a^b f(x) \, dx = \int_a^b g'(x) \, dx = g(x) \big|_a^b$$

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g'(x) \, dx = g(x) \big|_{a}^{b} g(b) - g(a).$$

The FTC says, roughly, that if g is an antiderivative of f, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g'(x) \, dx = g(x) \big|_{a}^{b} g(b) - g(a).$$

$$\int_0^2 6x^2$$

The FTC says, roughly, that if g is an antiderivative of f, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g'(x) \, dx = g(x) \big|_{a}^{b} g(b) - g(a).$$

$$\int_0^2 6x^2 = \int_0^2 (2x^3)' \, dx$$

The FTC says, roughly, that if g is an antiderivative of f, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g'(x) \, dx = g(x) \big|_{a}^{b} g(b) - g(a).$$

$$\int_0^2 6x^2 = \int_0^2 (2x^3)' \, dx = (2x^3) \Big|_0^2$$

The FTC says, roughly, that if g is an antiderivative of f, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g'(x) \, dx = g(x) \big|_{a}^{b} g(b) - g(a).$$

$$\int_0^2 6x^2 = \int_0^2 (2x^3)' \, dx = (2x^3) \Big|_0^2 = 2(2)^3 - 2(0)^3$$

The FTC says, roughly, that if g is an antiderivative of f, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g'(x) \, dx = g(x) \big|_{a}^{b} g(b) - g(a).$$

$$\int_0^2 6x^2 = \int_0^2 (2x^3)' \, dx = (2x^3) \Big|_0^2 = 2(2)^3 - 2(0)^3 = 16.$$

To compute an integral using the FTC, it does not matter which antiderivative we choose.

To compute an integral using the FTC, it does not matter which antiderivative we choose.

Example. Let $f(x) = 6x^2$, as before.

To compute an integral using the FTC, it does not matter which antiderivative we choose.

To compute an integral using the FTC, it does not matter which antiderivative we choose.

$$\int_0^2 6x^2$$

To compute an integral using the FTC, it does not matter which antiderivative we choose.

$$\int_0^2 6x^2 = \int_0^2 (2x^3 + 17)' \, dx$$

To compute an integral using the FTC, it does not matter which antiderivative we choose.

$$\int_0^2 6x^2 = \int_0^2 (2x^3 + 17)' \, dx$$
$$= (2x^3 + 17) \Big|_0^2$$

To compute an integral using the FTC, it does not matter which antiderivative we choose.

$$\int_{0}^{2} 6x^{2} = \int_{0}^{2} (2x^{3} + 17)' dx$$
$$= (2x^{3} + 17) \Big|_{0}^{2}$$
$$= (2(2)^{3} + 17) - (2(0)^{3} + 17)$$

To compute an integral using the FTC, it does not matter which antiderivative we choose.

$$\int_{0}^{2^{2}} 6x^{2} = \int_{0}^{2} (2x^{3} + 17)' dx$$
$$= (2x^{3} + 17) \Big|_{0}^{2}$$
$$= (2(2)^{3} + 17) - (2(0)^{3} + 17)$$
$$= 2(2)^{3} - 2(0)^{3}$$

To compute an integral using the FTC, it does not matter which antiderivative we choose.

$$\int_{0}^{2} 6x^{2} = \int_{0}^{2} (2x^{3} + 17)' dx$$
$$= (2x^{3} + 17) \Big|_{0}^{2}$$
$$= (2(2)^{3} + 17) - (2(0)^{3} + 17)$$
$$= 2(2)^{3} - 2(0)^{3}$$
$$= 16.$$

Suppose that f and g are integrable on [a, b] and $c \in \mathbb{R}$. then

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g \text{ and } \int_a^b cf = c \int_a^b f.$$

Suppose that f and g are integrable on [a, b] and $c \in \mathbb{R}$. then

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g \text{ and } \int_a^b cf = c \int_a^b f.$$

$$\int_0^2 2x^2 - 7\cos(x)\,dx =$$

Suppose that f and g are integrable on [a, b] and $c \in \mathbb{R}$. then

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g \text{ and } \int_a^b cf = c \int_a^b f.$$

$$\int_0^2 2x^2 - 7\cos(x) \, dx = 2 \int_0^2 x^2 \, dx - 7 \int_0^2 \cos(x) \, dx.$$

Suppose that f and g are integrable on [a, b] and $f(x) \le g(x)$ for all $x \in [a, b]$. Then $\int_a^b f \le \int_a^b g$. In other words, integration preserves inequalities.

Suppose that f and g are integrable on [a, b] and $f(x) \le g(x)$ for all $x \in [a, b]$. Then $\int_a^b f \le \int_a^b g$. In other words, integration preserves inequalities.

Example. We have $5\cos(x) \le 5$ on [3,8]. Therefore,

Suppose that f and g are integrable on [a, b] and $f(x) \le g(x)$ for all $x \in [a, b]$. Then $\int_a^b f \le \int_a^b g$. In other words, integration preserves inequalities.

Example. We have $5\cos(x) \le 5$ on [3,8]. Therefore,

$$\int_3^8 \cos(x) \, dx \le \int_3^8 5 \, dx$$

Suppose f is integrable on [a, b] and a < c < b. Then

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Suppose f is integrable on [a, b] and a < c < b. Then

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

$$\int_0^{10} e^{3x} \, dx = \int_0^4 e^{3x} \, dx + \int_4^{10} e^{3x} \, dx.$$

If f is continuous on [a, b], then $\int_a^b f$ exists. In general,

 $\mathsf{differentiable} \implies \mathsf{continuous} \implies \mathsf{integrable}.$

If f is continuous on [a, b], then $\int_a^b f$ exists. In general,

differentiable \implies continuous \implies integrable.

Example. The function f(x) = |x| is continuous but is not differentiable at x = 0.

If f is continuous on [a, b], then $\int_a^b f$ exists. In general,

differentiable \implies continuous \implies integrable.

Example. The function f(x) = |x| is continuous but is not differentiable at x = 0. The function

$$g(x) = \begin{cases} x & \text{if } x \neq 0, \\ 5 & \text{if } x = 0. \end{cases}$$

us integrable but not continuous.

Compute the following integrals using the FTC:

1. $\int_0^3 (2e^x + 5x) \, dx$.

Compute the following integrals using the FTC:

- 1. $\int_0^3 (2e^x + 5x) \, dx$.
- 2. $\int_0^{\pi} \sin(x) \, dx$.

Compute the following integrals using the FTC:

- 1. $\int_0^3 (2e^x + 5x) \, dx$.
- 2. $\int_0^{\pi} \sin(x) \, dx$.
- 3. $\int_0^{2\pi} \sin(x) \, dx$.

Compute the following integrals using the FTC:

1.
$$\int_0^3 (2e^x + 5x) \, dx$$
.

- 2. $\int_0^{\pi} \sin(x) \, dx$.
- 3. $\int_0^{2\pi} \sin(x) \, dx$.
- 4. $\int_0^2 (3x^2 + 2x + 1)(x^3 + x^2 + x)^{99} dx$.

1.
$$\int x^n \, dx$$
 for $n = 1, 2, 3, ...$

1.
$$\int x^n dx$$
 for $n = 1, 2, 3, ...$
2. $\int x^{1/2} dx$.

Compute *indefinite integrals* (i.e., find the most general antiderivatives):

1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$.

Compute *indefinite integrals* (i.e., find the most general antiderivatives):

1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$. 4. $\int 5x^7 + 2x^3 + 4 dx$.

Compute *indefinite integrals* (i.e., find the most general antiderivatives):

1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$. 4. $\int 5x^7 + 2x^3 + 4 dx$. 5. $\int \cos(x) + 3e^x dx$.

- 1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$. 4. $\int 5x^7 + 2x^3 + 4 dx$. 5. $\int \cos(x) + 3e^x dx$.
- 6. $\int e^{ax}$ where *a* is a nonzero constant.

Compute *indefinite integrals* (i.e., find the most general antiderivatives):

1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$. 4. $\int 5x^7 + 2x^3 + 4 dx$. 5. $\int \cos(x) + 3e^x dx$. 6. $\int e^{ax}$ where *a* is a nonzero constant. 7. $\int \cos(4x) dx$.

Compute *indefinite integrals* (i.e., find the most general antiderivatives):

1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$. 4. $\int 5x^7 + 2x^3 + 4 dx$. 5. $\int \cos(x) + 3e^x dx$. 6. $\int e^{ax}$ where a is a nonzero constant. 7. $\int \cos(4x) dx$. 8. $\int x(3x^2+5)^{100} dx$.

Compute *indefinite integrals* (i.e., find the most general antiderivatives):

1. $\int x^n dx$ for n = 1, 2, 3, ...2. $\int x^{1/2} dx$. 3. $\int x^{3/2} dx$. 4. $\int 5x^7 + 2x^3 + 4 \, dx$. 5. $\int \cos(x) + 3e^x dx$. 6. $\int e^{ax}$ where a is a nonzero constant. 7. $\int \cos(4x) dx$. 8. $\int x(3x^2+5)^{100} dx$. 9. $\int x^2 e^{x^3} dx$.