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» Antiderivatives and the fundamental theorem of calculus
(FTQ).
» First properties of the integral.
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If g’ = f, then g is an antiderivative of f.

Example. Let f(x) = 6x2. Find several antiderivatives of f.

The antiderivatives of f are exactly functions of the form
2x3 + ¢

where ¢ € R.
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The FTC says, roughly, that if g is an antiderivative of f, then

b b
/a f(x)dx = /a g'(x)dx = g(x)|:g(b) — g(a).

Example.
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The FTC says, roughly, that if g is an antiderivative of f, then

b b
/a f(x)dx = /a g'(x)dx = g(x)|:g(b) — g(a).

Example.
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FTC

The FTC says, roughly, that if g is an antiderivative of f, then

b b
/a f(x)dx = /a g'(x)dx = g(x)|:g(b) — g(a).

Example.

2 2 2
/ 6x> = / (2x3) dx = (2x%)] =2(2)® —2(0)® = 16.
0 0

0
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To compute an integral using the FTC, it does not matter which
antiderivative we choose.

Example. Let f(x) = 6x2, as before. However this time,
take 2x3 4 17 as an antiderivative. We have,

/6x —/ (2x% + 17) dx

2
= (2x° 4 17)

0
= (22 +17) - (2(0)* +17)
=2(2)% - 2(0)®

= 16.
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Suppose that f and g are integrable on [a, b] and ¢ € R. then
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Properties of the integral

Suppose that f and g are integrable on [a, b] and ¢ € R. then
b
/(f+g /f+/g and /cf—c/f
a

Example.

2 2 2
/ 2x2? — 7 cos(x) dx = 2/ x2 dx — 7/ cos(x) dx.
0 0 0
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Suppose that f and g are integrable on [a, b] and f(x) < g(x) for
all x € [a, b]. Then fab f< fab g. In other words, integration
preserves inequalities.

Example. We have 5cos(x) < 5 on [3,8]. Therefore,

8 8
/ cos(x) dx < / 5 dx.
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Properties of the integral

Suppose f is integrable on [a, b] and a < ¢ < b. Then
b c b
/ f :/ f+/ f.
a a C

Example.

10 4 10
/ e dx = / e dx + / e dx.
0 0 4
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Properties of the integral

If f is continuous on [a, b], then fab f exists. In general,

differentiable = continuous = integrable.

Example. The function f(x) = |x| is continuous but is not
differentiable at x = 0. The function

) x ifx#0,
g(x)_{5 if x = 0.

us integrable but not continuous.
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Practice

Compute the following integrals using the FTC:
1. [2(2¢* + 5x) dx.

2. [y sin(x) dx.

w

. f027r sin(x) dx.

~

23X 4 2x + 1) (x3 + X2 4 x)% dx.
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Practice

Compute indefinite integrals (i.e., find the most general
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. [x"dx forn=1,2,3,...
[ X2 dx.

[ X3/ dx.

- [5x7 4+ 2x3 + 4 dx.

. J cos(x) + 3e* dx.
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Compute indefinite integrals (i.e., find the most general
antiderivatives):

[ x"dx forn=1,2,3,...

[ x1/2 dx.

[ x3/2 dx.

[5x" +2x3 + 4 dx.

J cos(x) + 3e* dx.

J € where a is a nonzero constant.
| cos(4x) dx.

[ x(3x2 +5)19 dx.
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