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Review definition of the integral

From homework:

1
f(x) = _sz +3 Q={-210,1,2}

L(f,Q) U(f, Q)

L(f,Q) =95 < 115 = U(f, Q).



Review of the integral

R={-2,-16,-1.2,-0.8,-0.4,0.4,0.8,1.2,1.6,2}

L(f,R) U(f, R)

L(f,R) = 10.24 < 11.04 = U(f, R).
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Strategy for computing the integral fab f:

1. Divide interval into n equal-length pieces with the
partition P,.

2. Then
L(f,P,) < L/fg U/fg U(F, Py).

3. Show that
i L6 Pr) = fim, U(F, ) = A
for some number A.
4. Then
A= lim L(f,P,) < L/fg U/fg lim U(f, Py) = A.
n—oo
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Review of the integral

Strategy for computing the integral fab f:

1.

Divide interval into n equal-length pieces with the
partition P,.

. Then

L(f,P,,)gL/ng/ng(f,P,,).

Show that
nIer;o L(f,Py) = nILn;O U(f,P,)=A

for some number A.

. Then

A= lim L(f,Pn)gL/fgu/fg lim U(f, Py) = A.
n—oo

n—o0

So [Pf=A
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Fundamental theorem of calculus

Suppose fab f exists. Suppose that g is a continuous function
on [a, b] which is differentiable on (a, b) with g’ = f. Then

[ 100 = [ g') = 6(6) - a(a).

Notation making variable explicit:

[ #6) x = 5(6) ~ 8.
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Example of FTC

Let f(x) = —%XQ +3. Let g(x) = — %x‘?’ +3x. Then g/ = f. So

/ 22 f = g(2) - g(-2)
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Example of FTC

Let f(x) = —2x? + 3. Let g(x) = — $5x3+3x. Then g’ = f. So
[ f=50)-s(-2)
— (-5 +30) - (~55(-2° +3(-2))

(349

4
=—=+12
3+
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Let f(x) = —2x? + 3. Let g(x) = — $5x3+3x. Then g’ = f. So
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Examples

Compute the following integrals using the FTC:

1. f(x xon[02]

2. f(x)=x3on[1,2].

4. f(x) = cos(x) + 1 on [0,7/2].

(x) =
(x)
3. f(x) = cos(x) on [0, 7/2].
(x)
(x)

5. f(x) = cos(x) + sin(x) on [0, 7/2].
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Signed area

Consider the function f(x) = 3x on [—2,0]. By the FTC, we have

0 3 .
3xdx = =x°
[2XX 2X

How can the area be negative?



Signed area

Lower and upper sums for the partition P = {—2,—1,0}:

2 -1 -2 -1
_2 -2
—4 —4
-6 —6




Signed area

The integral calculates area between the graph and the x-axis
positively when the graph is above the x-axis and negatively when
the graph is below the x-axis.
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