Math 111

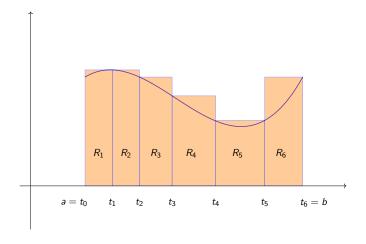
October 31, 2022

Today

Today

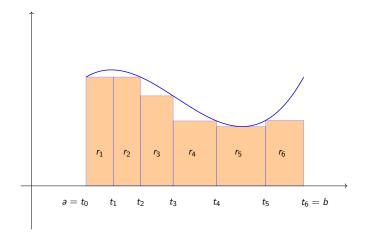
▶ Definition of the integral.

Upper sum



An upper sum U(f,P) for some function f.

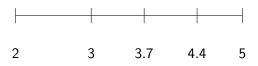
Lower sum



A lower sum L(f, P) for some function f.

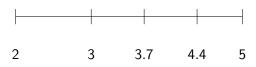
A partition of the interval [2,5]:

A partition of the interval [2,5]:



We specify a partition by listing a set of real numbers that includes the endpoints of the interval:

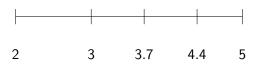
A partition of the interval [2,5]:



We specify a partition by listing a set of real numbers that includes the endpoints of the interval:

$$P = \{2, 3, 3.7, 4.4, 5\}$$

A partition of the interval [2,5]:



We specify a partition by listing a set of real numbers that includes the endpoints of the interval:

$$P = \{2, 3, 3.7, 4.4, 5\}$$

Subintervals of the partition *P*:

Consider partition of $\left[0,1\right]$ given by

$$P = \{0, 0.2, 0.3, 0.6, 0.8, 1\}$$

Consider partition of $\left[0,1\right]$ given by

$$P = \{0, 0.2, 0.3, 0.6, 0.8, 1\}$$

Consider partition of [0,1] given by

$$P = \{0, 0.2, 0.3, 0.6, 0.8, 1\}$$

It has five subintervals:

Consider partition of [0,1] given by

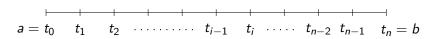
$$P = \{0, 0.2, 0.3, 0.6, 0.8, 1\}$$

It has five subintervals:

$$[0,0.2],\quad [0.2,0.3],\quad [0.3,0.6],\quad [0.6,0.8],\quad [0.8,1]$$

A general partition of an interval [a, b]:

A general partition of an interval [a, b]:



A general partition of an interval [a, b]:

$$a = t_0$$
 t_1 t_2 t_{i-1} t_i t_{n-2} t_{n-1} $t_n = b$

$$P = \{t_0, t_1, \dots, t_{n-1}, t_n\}$$

A general partition of an interval [a, b]:

$$a = t_0$$
 t_1 t_2 t_{i-1} t_i t_{n-2} t_{n-1} $t_n = b$

$$P = \{t_0, t_1, \dots, t_{n-1}, t_n\}$$

The subintervals:

$$[t_0, t_1], [t_1, t_2], \ldots [t_{i-1}, t_i], \ldots [t_{n-1}, t_n]$$

A general partition of an interval [a, b]:

$$a = t_0$$
 t_1 t_2 t_{i-1} t_i t_{n-2} t_{n-1} $t_n = b$

$$P = \{t_0, t_1, \dots, t_{n-1}, t_n\}$$

The subintervals:

$$[t_0, t_1], [t_1, t_2], \ldots [t_{i-1}, t_i], \ldots [t_{n-1}, t_n]$$

The *i*-th subinterval: $[t_{i-1}, t_i]$.

The image of an interval

The image of an interval [s, t] under a function f:

$$f([s,t]) = \{f(x) : s \le x \le t\}.$$

It is the set of all real numbers of the form f(x) such that $s \le x \le t$.

The image of an interval

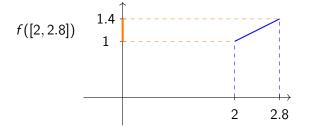
The image of an interval [s, t] under a function f:

$$f([s,t]) = \{f(x) : s \le x \le t\}.$$

It is the set of all real numbers of the form f(x) such that $s \le x \le t$.

Thus, f([s, t]) is the set of all heights f(x) for x in the interval [s, t].

The image of an interval



The image of the interval [2, 2.8] under $f(x) = \frac{x}{2}$.

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

$$f([2,2.8])$$

1.4

1

2 2.8

lub f([2, 2.8]) =

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

$$f([2,2.8])$$

1.4

2 2.8

lub
$$f([2, 2.8]) = f(2.8) = 1.4$$

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

lub
$$f([2, 2.8]) = f(2.8) = 1.4$$

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

$$f([2,2.8])$$

1.4

2 2.8

glb f([2, 2.8]) =

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

$$f([2,2.8])$$

1.4

2 2.8

glb
$$f([2, 2.8]) = f(2) = 1$$

Example. Say
$$[s, t] = [2, 2.8]$$
 and $f(x) = \frac{x}{2}$

glb
$$f([2, 2.8]) = f(2) = 1$$

For each subinterval $[t_{i-1}, t_i]$ of a partition, we would like to create two rectangles: one for the upper sum and one for the lower sum.

For each subinterval $[t_{i-1}, t_i]$ of a partition, we would like to create two rectangles: one for the upper sum and one for the lower sum.

Height for the upper sum: $\operatorname{lub} f([t_{i-1}, t_i])$

For each subinterval $[t_{i-1}, t_i]$ of a partition, we would like to create two rectangles: one for the upper sum and one for the lower sum.

Height for the upper sum: $\operatorname{lub} f([t_{i-1}, t_i])$

Height for the lower sum: $glb f([t_{i-1}, t_i])$

For each subinterval $[t_{i-1}, t_i]$ of a partition, we would like to create two rectangles: one for the upper sum and one for the lower sum.

Height for the upper sum: $lub f([t_{i-1}, t_i])$

Height for the lower sum: $glb f([t_{i-1}, t_i])$

We will only consider functions *f* which are bounded.

For each subinterval $[t_{i-1}, t_i]$ of a partition, we would like to create two rectangles: one for the upper sum and one for the lower sum.

Height for the upper sum: $lub f([t_{i-1}, t_i])$

Height for the lower sum: $glb f([t_{i-1}, t_i])$

We will only consider functions f which are bounded. This means that the set f([a,b]) is bounded above and below.

For each subinterval $[t_{i-1}, t_i]$ of a partition, we would like to create two rectangles: one for the upper sum and one for the lower sum.

Height for the upper sum: $lub f([t_{i-1}, t_i])$

Height for the lower sum: $glb f([t_{i-1}, t_i])$

We will only consider functions f which are bounded. This means that the set f([a,b]) is bounded above and below.

That way, these heights will always exist.

Upper sums for f on [a, b]

Upper sums for f on [a, b]

1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.

Upper sums for f on [a, b]

- 1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.
- 2. Find the height of the rectangle R_i to place on the *i*-th interval:

$$M_i = \operatorname{lub} f([t_{i-1}, t_i])$$

Upper sums for f on [a, b]

- 1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.
- 2. Find the height of the rectangle R_i to place on the i-th interval:

$$M_i = \operatorname{lub} f([t_{i-1}, t_i])$$

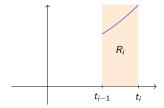
3. $area(R_i) = height \times base = M_i(t_i - t_{i-1}).$

Upper sums for f on [a, b]

- 1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.
- 2. Find the height of the rectangle R_i to place on the i-th interval:

$$M_i = \operatorname{lub} f([t_{i-1}, t_i])$$

3. $area(R_i) = height \times base = M_i(t_i - t_{i-1}).$



Rectangle on the i-th subinterval, over-estimating the area.

4. Add these areas to get the upper sum for f with respect to the partition P :	

$$U(f, P) := \operatorname{area}(R_1) + \operatorname{area}(R_2) + \cdots + \operatorname{area}(R_n)$$

$$U(f, P) := \operatorname{area}(R_1) + \operatorname{area}(R_2) + \cdots + \operatorname{area}(R_n)$$

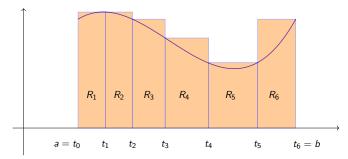
= $M_1(t_1 - t_0) + M_2(t_2 - t_1) + \cdots + M_n(t_n - t_{n-1})$

partition
$$P$$
: $U(f,P):=\operatorname{area}(R_1)+\operatorname{area}(R_2)+\cdots+\operatorname{area}(R_n)$

$$egin{aligned} U(f,P) &:= \mathsf{area}(R_1) + \mathsf{area}(R_2) + \cdots + \mathsf{area}(R_n) \ &= M_1(t_1 - t_0) + M_2(t_2 - t_1) + \cdots + M_n(t_n - t_{n-1}) \end{aligned}$$

 $=\sum_{i=1}^n M_i(t_i-t_{i-1}).$

$$egin{aligned} U(f,P) &:= \operatorname{area}(R_1) + \operatorname{area}(R_2) + \cdots + \operatorname{area}(R_n) \ &= M_1(t_1 - t_0) + M_2(t_2 - t_1) + \cdots + M_n(t_n - t_{n-1}) \ &= \sum_{i=1}^n M_i(t_i - t_{i-1}). \end{aligned}$$



An upper sum U(f, P) for some function f.

1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.

- 1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.
- 2. Find the height of the rectangle r_i to place on the i-th rectangle:

$$m_i = \mathrm{glb}\,f([t_{i-1},t_i])$$

- 1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.
- 2. Find the height of the rectangle r_i to place on the i-th rectangle:

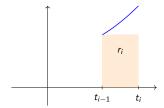
$$m_i = \mathrm{glb}\,f([t_{i-1},t_i])$$

3. $area(r_i) = height \times base = m_i(t_i - t_{i-1}).$

- 1. Fix a partition $P = \{t_0, t_1, \dots, t_n\}$ with $t_0 = a$ and $t_n = b$.
- 2. Find the height of the rectangle r_i to place on the i-th rectangle:

$$m_i = \mathrm{glb}\,f([t_{i-1},t_i])$$

3. $area(r_i) = height \times base = m_i(t_i - t_{i-1}).$



Rectangle on the *i*-th subinterval, under-estimating the area.

4. Add these partition <i>P</i> :	e areas to get the	lower sum for	f with respect to th	е

$$L(f, P) := area(r_1) + area(r_2) + \cdots + area(r_n)$$

$$L(f, P) := \operatorname{area}(r_1) + \operatorname{area}(r_2) + \cdots + \operatorname{area}(r_n)$$

= $m_1(t_1 - t_0) + m_2(t_2 - t_1) + \cdots + m_n(t_n - t_{n-1})$

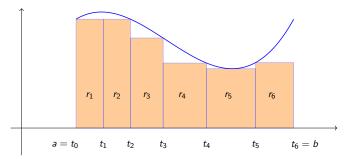
partition
$$P$$
: $L(f,P):=\operatorname{area}(r_1)+\operatorname{area}(r_2)+\cdots+\operatorname{area}(r_n)$

$$L(t, P) := \operatorname{area}(r_1) + \operatorname{area}(r_2) + \dots + \operatorname{area}(r_n)$$

$$= m_1(t_1 - t_0) + m_2(t_2 - t_1) + \dots + m_n(t_n - t_{n-1})$$

$$= \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

$$egin{aligned} L(f,P) &:= \mathsf{area}(r_1) + \mathsf{area}(r_2) + \cdots + \mathsf{area}(r_n) \ &= m_1(t_1 - t_0) + m_2(t_2 - t_1) + \cdots + m_n(t_n - t_{n-1}) \ &= \sum_{i=1}^n m_i(t_i - t_{i-1}). \end{aligned}$$



A lower sum L(f, P) for some function f.

As we vary the partition P we get lots of upper sums.

As we vary the partition P we get lots of upper sums.

The upper sums are over-estimates, so the smaller an upper sum is, the better.

As we vary the partition P we get lots of upper sums.

The upper sums are over-estimates, so the smaller an upper sum is, the better.

Each upper sum is a number. Collect these numbers in a set:

 $\{U(f,P): P \text{ is a partition of } [a,b]\}.$

As we vary the partition P we get lots of upper sums.

The upper sums are over-estimates, so the smaller an upper sum is, the better.

Each upper sum is a number. Collect these numbers in a set:

$$\{U(f,P): P \text{ is a partition of } [a,b]\}.$$

Define the upper integral to be the greatest lower bound of this set:

$$U\int_a^b f = \text{glb}\{U(f,P): P \text{ is a partition of } [a,b]\}.$$

As we vary the partition P we get lots of lower sums.

As we vary the partition P we get lots of lower sums.

The lower sums are under-estimates, so the larger a lower sum is, the better.

As we vary the partition P we get lots of lower sums.

The lower sums are under-estimates, so the larger a lower sum is, the better.

Each lower sum is a number. Collect these numbers in a set:

 $\{L(f, P) : P \text{ is a partition of } [a, b]\}.$

As we vary the partition P we get lots of lower sums.

The lower sums are under-estimates, so the larger a lower sum is, the better.

Each lower sum is a number. Collect these numbers in a set:

$$\{L(f, P) : P \text{ is a partition of } [a, b]\}.$$

Define the lower integral to be the least upper bound of this set:

$$L \int_a^b f = \text{lub}\{L(f, P) : P \text{ is a partition of } [a, b]\}.$$

We always have

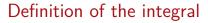
$$L\int_{a}^{b}f\leq U\int_{a}^{b}f.$$

We always have

$$L\int_{a}^{b}f\leq U\int_{a}^{b}f.$$

If the lower and upper integrals are equal, we define the integral of f on [a, b] to be their common value:

$$\int_a^b f := L \int_a^b f = U \int_a^b f.$$



Review the definition in the lecture notes for today.