Math 111

October 14, 2022

Today

► The second derivative test.

► Curve sketching.

The second derivative of a function f is the derivative of f'.

The second derivative of a function f is the derivative of f'.

Example. If $f(x) = x^4 - 3x^2 + 2$, then

The second derivative of a function f is the derivative of f'.

Example. If $f(x) = x^4 - 3x^2 + 2$, then

$$f'(x) = 4x^3 - 6x,$$

The second derivative of a function f is the derivative of f'.

Example. If $f(x) = x^4 - 3x^2 + 2$, then

$$f'(x) = 4x^3 - 6x,$$

and

$$f''(x) = 12x^2 - 6.$$

First derivative: f'(c) is the slope or rate of change of f at c.

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

 $f''(c) > 0 \implies f'$ is increasing at c

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

 $f''(c) > 0 \implies f' \text{ is increasing at } c \implies \text{ the slope of } f \text{ is increasing at } c$

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

 $f''(c) > 0 \implies f' \text{ is increasing at } c$ \implies the slope of f is increasing at c $\implies f$ is concave up at c

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

 $f''(c) > 0 \implies f' \text{ is increasing at } c$ $\implies \text{ the slope of } f \text{ is increasing at } c$ $\implies f \text{ is concave up at } c$ $f''(c) < 0 \implies f' \text{ is decreasing at } c$

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

 $f''(c) > 0 \implies f' \text{ is increasing at } c$ $\implies \text{ the slope of } f \text{ is increasing at } c$ $\implies f \text{ is concave } up \text{ at } c$ $f''(c) < 0 \implies f' \text{ is decreasing at } c$ $\implies \text{ the slope of } f \text{ is decreasing at } c$

First derivative: f'(c) is the slope or rate of change of f at c. $f'(c) > 0 \implies f$ is increasing at c $f'(c) < 0 \implies f$ is decreasing at c

Second derivative: f''(c) is the slope or rate of change of f' at c.

 $\begin{array}{rcl} f''(c) > 0 \implies f' \text{ is increasing at } c \\ \implies & \text{the slope of } f \text{ is increasing at } c \\ \implies & f \text{ is } concave \ up \ \text{at } c \end{array}$ $f''(c) < 0 \implies f' \text{ is decreasing at } c \\ \implies & \text{the slope of } f \text{ is decreasing at } c \end{array}$

 \implies f is concave down at c

Examples of functions f such that f'' > 0:

Examples of functions f such that f'' > 0:

Examples of functions f such that f'' < 0:

Examples of functions f such that f'' < 0:

$$f'(c) = 0$$
 and $f''(c) > 0 \implies$ local minimum at c

$$f'(c)=0$$
 and $f''(c)>0 \implies$ local minimum at c

$$f'(c)=0$$
 and $f''(c)<0 \implies$ local maximum at c

$$f'(c) = 0$$
 and $f''(c) > 0 \implies$ local minimum at c
 $f'(c) = 0$ and $f''(c) < 0 \implies$ local maximum at c
 $f'(c) = 0$ and $f''(c) = 0 \implies$ inconclusive

Why f'(c) = f''(c) = 0 is inconclusive:

In the problematic case, where f'(c) = f''(c) = 0, use this strategy:

In the problematic case, where f'(c) = f''(c) = 0, use this strategy:

► If there is an interval about c on which f'(x) < 0 to the left of c and f'(x) > 0 to the right of c. Then f has a local minimum at c.

In the problematic case, where f'(c) = f''(c) = 0, use this strategy:

- ▶ If there is an interval about c on which f'(x) < 0 to the left of c and f'(x) > 0 to the right of c. Then f has a local minimum at c.
- If there is an interval about c on which f'(x) > 0 to the left of c and f'(x) < 0 to the right of c. Then f has a local maximum at c.

In the problematic case, where f'(c) = f''(c) = 0, use this strategy:

- ▶ If there is an interval about c on which f'(x) < 0 to the left of c and f'(x) > 0 to the right of c. Then f has a local minimum at c.
- ▶ If there is an interval about c on which f'(x) > 0 to the left of c and f'(x) < 0 to the right of c. Then f has a local maximum at c.
- ► If there is an interval about c on which f' has the same sign on either side of c. Then c is a point of inflection for f.

Exercise

For the function pictured below, what are the signs of f'(x) and f''(x) at each point x?

Exercise

For the function pictured below, what are the signs of f'(x) and f''(x) at each point x?

