
;

Math 111

October 5, 2022



Goals

Two main results from optimization theory

I Theorem 1. If f is differentiable at c and f has a local
minimum or maximum at c, then f ′(c) = 0.

I Theorem 2. (The extreme value theorem, EVT) If f is
continuous on a closed bounded interval [a, b], then f has a
(global) minimum and maximum on that interval.
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Intervals

(−4, 6) = {x ∈ R : −4 < x < 6}
(−4, 6] = {x ∈ R : −4 < x ≤ 6}
[−4, 6) = {x ∈ R : −4 ≤ x < 6}
[−4, 6] = {x ∈ R : −4 ≤ x ≤ 6}

(−∞, 5) = {x ∈ R : x < 5}
(−∞, 5] = {x ∈ R : x ≤ 5}

(5,∞) = {x ∈ R : x > 5}
[5,∞) = {x ∈ R : x ≥ 5}

(−∞,∞) = R = the real numbers
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Open and closed intervals

An interval is open if it contains neither of its endpoints:

∅, (a, b), (−∞, b), (a,∞), (−∞,∞)

where a and b are real numbers.

An interval is closed if it has one of the following forms:

∅, [a, b], (−∞, b], [a,∞), (−∞,∞).

Warning: “closed” does not mean “not open”. For example,
consider

(−4, 8].
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Bounded intervals

An interval is bounded above if there exists a real number larger
than all numbers in the interval.

An interval is bounded below if there exists a real number smaller
than all numbers in the interval.
An interval is bounded if it is bounded above and below.

bounded above : (−∞, 3), (−8, 5], [0, 1]
bounded below : [3,∞), (−8, 5], [0, 1]

bounded : (−8, 5], [0, 1], (0, 1).
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Global minima and maxima

Let f be a function defined on an interval I, and let c be an
element of I.

Then
I f has a minimum at c ∈ I if f (c) ≤ f (x) for all x ∈ I.
I f has a maximum at c ∈ I if f (c) ≥ f (x) for all x ∈ I.

a c1 c2 c3 c4 c5 b
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Local minima and maxima

I f has a relative (or local) minimum at c ∈ I if there exists an
open interval containing c and contained in I on which f has
a minimum at c.

I f has a relative (or local) maximum at c ∈ I if the exists an
open interval containing c and contained in I on which f has
a maximum at c.
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Local minima and maxima

Question. Suppose f is a function defined on an interval I, and
suppose that f has a maximum at c ∈ I.

Does f have a local maximum at c?

Answer. The function f has a local maximum at c if and only if
there is an open interval containing c and contained in I.

A similar statement holds for minima.
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This function defined on [−1, 1], has maxima at ±1 and a
minimum at 0.

It has a local minimum at 0 and no local maxima.
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Example

Question. Let f (x) = 1 for all real numbers x . What are the
global and local maxima and minima of f ?



Two main results of optimization theory

Theorem 1. If f is differentiable at c and f has a local minimum
or maximum at c, then f ′(c) = 0.

Proof. See board (or notes).
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Question.

Suppose f ′(c) = 0. Does that mean that c is a local minimum or
maximum of f ?

Answer: No. Consider f (x) = x3 at x = 0:
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Two main results of optimization theory

Theorem 2. (The extreme value theorem, EVT) If f is continuous
on a closed bounded interval [a, b], then f has a (global) minimum
and maximum on that interval.

Proof. Math 112.

Necessary assumptions:
I f is continuous.
I The interval is closed.
I The interval is bounded.
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Example

Let f (x) = x3 − x2. What are the minima and maxima of f , both
local and global, on I = [−1/2, 1/2]?

I Since f is continuous and I is closed and bounded, the
extreme value theorem applies: f as a global maximum and a
global minimum on I.

I Since f is differentiable, f ′(c) = 0 for any local minimum or
maximum (which includes any global minimum or maximum
not at the endpoints).

I We need to check the points where f ′ = 0 and the endpoints
of the interval, ±1.
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Example

f (x) = x3 − x2

on I = [−1/2, 1/2].

I We have f ′(x) = 3x2 − 2x = 0⇐⇒ x = 0 or x = 2/3.
I f (0) = 0, f (−1/2) = −3/8, f (1/2) = −1/8. We

have f (2/3) = 9/8, but 2/3 6∈ [−1, 1].
I So on the interval [−1/2, 1/2], the function f has minimum

at −1/2 and a maximum at 0.
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Graph of f (x) = x3 − x2.

Note the local minumum at x = 2/3.


