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Since f is differentiable at c,
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Therefore, f'(c) =0<0 and f'(c) > 0. So f'(c) = 0.
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Theorem 1. If f is differentiable at ¢ and f has a local minimum
or maximum at ¢, then f'(c) = 0.

Theorem 2. (The extreme value theorem, EVT) If f is continuous
on a closed bounded interval [a, b], then f has a (global) minimum
and maximum on that interval.
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Optimization procedure

Procedure for optimization. Suppose that f is a continuous
function on a closed bounded interval [a, b]. Then the (global)
minima and maxima for f occur among the following points:

1. The points in (a, b) at which the derivative of f is 0.
2. The points in (a, b) at which f is not differentiable.
3. The endpoints, a and b.

The points satisfying 1 or 2 are called critical points. Evaluate f at
the critical points and the endpoints. The smallest value will give
the minimum and the largest will give the maximum.
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Example

Find the extrema, local and global, for
f(x) = x3 - x?
onl=1[-1/2,1/2].
» We have f/(x) =3x?> —2x =0 <= x =0 or x = 2/3.

» Critical points: 0, 2/3. Endpoints: —1/2, 1/2.

v

f(0) =0, f(—-1/2) = -3/8, f(1/2) = —-1/8.
» We have f(2/3) = —4/27, but 2/3 ¢ [-1/2,1/2].

» So on the interval [-1/2,1/2], the function f has minimum
at —1/2 and a maximum at 0.



Example

Graph of f(x) = x3 — x2.

Note the local minimum at x = 2/3.
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Example

Suppose a farmer has ¢ feet of fence and wants to make a
rectangular enclosure of the maximal area. What should the
dimensions of the rectangle be?

{=2w+2h = h:%—w
hi A A=tw=(§-w)w

1y, .2
—2€W w

w € [0,¢/2] (closed and bounded)
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Since the interval [0, £/2] is closed and bounded and A is
continuous, the extreme value theorem says that A has a maximum
on this interval.

If the maximum occurs in the interior of the interval, i.e., in
(0,¢/2), then it is a local maximum. So the derivative must be 0
there.

Check for critical points in the interior of the interval [0, ¢/2]:

dA d /1 5 1 !/
dW_dW<2EW—W>—2E—2W—O <— W—Z.

The only other place a maximum could occur is at the endpoints, 0
and £/2. So we evaluate A at the critical point and at the
endpoints, to see which points maximizes A. (See next page.)



Example

We have A = %KW — w2, So

A(0) =0, A((/2)=0, and A(€/4):f2.



Example
We have A = %KW — w2, So

A(0) =0, A(£/2) =0,

Recall that ¢ = 2w + 2h.

and A({/4) =

52
16



Example

We have A = 2/w — w?. So

2
A(0)=0, A({/2)=0, and A({/4)= %
Recall that € =2w —+ 2h. SO when w = 6/4, it fO”OWS
that h = {/4, too.



Example

We have A = %KW — w2, So

A(0) =0, A((/2)=0, and A(€/4)::f2.

Recall that £ = 2w + 2h. So when w = ¢/4, it follows
that h = {/4, too. That means the area of a rectangle with fixed
perimeter is maximized when it is a square:

h=1(/4

w=//4



