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Goals

I Proof of first optimization theorem.

I Appreciate the hypotheses in the Extreme Value Theorem
(EVT).

I Outline procedure for optimization + examples.
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Proof of derivative theorem for local extrema

Theorem 1. If f is differentiable at c and f has a local minimum
or maximum at c, then f ′(c) = 0.

Proof. We will just deal with the case of a local maximum.
Suppose c is a local maximum:
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a bc

(c, f (c + h))

(c, f (c)

f (c + h)− f (c) ≤ 0 and h > 0

=⇒ f (c + h)− f (c)
h ≤ 0

Therefore,
lim

h→0+

f (c + h)− f (c)
h ≤ 0.
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Extreme value theorem

Review:

Extreme value theorem, EVT. If f is continuous on a closed
bounded interval [a, b], then f has a (global) minimum and
maximum on that interval.

Definition of (global) minima and maxima. Let f be a function
defined on an interval I, and let c be an element of I. Then
I f has a minimum at c ∈ I if f (c) ≤ f (x) for all x ∈ I.
I f has a maximum at c ∈ I if f (c) ≥ f (x) for all x ∈ I.
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Extreme value theorem

Analyze the following function with regards to the EVT:

f (x) =
{

x if 0 < x < 1
1
2 if x = ±1.
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Extreme value theorem

Analyze the following function with regards to the EVT:

g : (0, 1)→ R
x 7→ x .
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Extreme value theorem

Analyze the following function with regards to the EVT:

h : (−∞,∞)→ R
x 7→ x .
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Extreme value theorem

Analyze the following function with regards to the EVT:

k : (0, 1)→ R

x 7→ 1
x .
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Extreme value theorem

Analyze the following function with regards to the EVT:

` : (−1, 1]→ R
x 7→ x2.

−2 −1 1 2
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Optimization procedure

Two main theorems:

Theorem 1. If f is differentiable at c and f has a local minimum
or maximum at c, then f ′(c) = 0.

Theorem 2. (The extreme value theorem, EVT) If f is continuous
on a closed bounded interval [a, b], then f has a (global) minimum
and maximum on that interval.
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Optimization procedure

Procedure for optimization. Suppose that f is a continuous
function on a closed bounded interval [a, b]. Then the (global)
minima and maxima for f occur among the following points:

1. The points in (a, b) at which the derivative of f is 0.

2. The points in (a, b) at which f is not differentiable.

3. The endpoints, a and b.

The points satisfying 1 or 2 are called critical points. Evaluate f at
the critical points and the endpoints. The smallest value will give
the minimum and the largest will give the maximum.
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Example

Find the extrema, local and global, for

f (x) = x3 − x2

on I = [−1/2, 1/2].

I We have f ′(x) = 3x2 − 2x = 0⇐⇒ x = 0 or x = 2/3.

I Critical points: 0, 2/3. Endpoints: −1/2, 1/2.

I f (0) = 0, f (−1/2) = −3/8, f (1/2) = −1/8.

I We have f (2/3) = −4/27, but 2/3 6∈ [−1/2, 1/2].

I So on the interval [−1/2, 1/2], the function f has minimum
at −1/2 and a maximum at 0.
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Note the local minimum at x = 2/3.



Example

Suppose a farmer has ` feet of fence and wants to make a
rectangular enclosure of the maximal area. What should the
dimensions of the rectangle be?

w

h A

` = 2w + 2h

A = hw

⇒ h = `
2 − w

=
(

`
2 − w

)
w

= 1
2`w − w2

w ∈ [0, `/2] (closed and bounded)
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Example

Since the interval [0, `/2] is closed and bounded and A is
continuous, the extreme value theorem says that A has a maximum
on this interval.

If the maximum occurs in the interior of the interval, i.e., in
(0, `/2), then it is a local maximum. So the derivative must be 0
there.

Check for critical points in the interior of the interval [0, `/2]:

dA
dw = d

dw

(1
2`w − w2

)
= 1

2`− 2w = 0 ⇐⇒ w = `

4 .

The only other place a maximum could occur is at the endpoints, 0
and `/2. So we evaluate A at the critical point and at the
endpoints, to see which points maximizes A. (See next page.)
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dA
dw = d

dw

(1
2`w − w2

)
= 1

2`− 2w

= 0 ⇐⇒ w = `

4 .

The only other place a maximum could occur is at the endpoints, 0
and `/2. So we evaluate A at the critical point and at the
endpoints, to see which points maximizes A. (See next page.)
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Example

We have A = 1
2`w − w2. So

A(0) = 0, A(`/2) = 0, and A(`/4) = `2

16 .

Recall that ` = 2w + 2h. So when w = `/4, it follows
that h = `/4, too. That means the area of a rectangle with fixed
perimeter is maximized when it is a square:

w = `/4

h = `/4
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