


Goals

Today's goal: the chain rule.

What is the derivative of the composition of two differentiable
functions?



Derivative theorem

» linearity: (f +g) =f + g’ and (cf) = c(f’) for each
constant ¢
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» quotient rule: (g 2

Composition rule: If f and g are continuous functions, then

lim f(g(x)) = f(lim g(x)) = f(g(c))-

X—C X—C
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/
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Let
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Then
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Note that

f'(x) =25x** and g'(x) = 12x° + 6x% + 5.
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Chain rule

(f(g(x))) = f'(g(x))g'(x)-

Example:

f(x)=x% and g(x)=3x*+2x>+5x+2

f'(x) = 25x** and g'(x) = 12x> + 6x* + 5.

((3x* + 2x® + 5x + 2)®) = (f(g(x)))’
= f'(g(x))g’(x)
= 25(3x* + 2x + 5x + 2)** (12x® 4 6x* + 5)

f'(g(x)) g'(x)
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f(x) = xi and  g(x) = 5x*+ x.
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Chain rule

(Vx) = (Xl/z)’ _ lx—l/z _ U

2 2\/x’
Therefore, by the chain rule,
1 1
(V3x2+2x +2) = .(6X+2):3X—+‘
2v3x2 4 2x + 2 V3x2 +2x+2

f(x)=+vx and g(x)=3x%+2x+2.
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For multiple compositions, we can apply the chain rule multiple
times:

(fg(h(x)))) = f'(g(h(x)))g'(h(x))H'(x).

Example.
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Chain rule

For multiple compositions, we can apply the chain rule multiple
times:

(fg(h(x)))) = f'(g(h(x)))g'(h(x))H'(x).

Example.
(sin((x*+5x — 2)10)Y
= cos((x* + 5x — 2)10)(10(x* + 5x — 2)°)(4x> + 5)

= 10(x* 4 5x — 2)°(4x3 + 5) cos((x* + 5x — 2)10).

f(x) =sin(x), g(x)=x and h(x)=x*45x—2.
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We can combine our early rules (sum, product, quotient) with the
chain rule.

In the following, we use the fact that (In(x)) = %

(x%sin(In(x))) = (x2)’sin(In(x)) + x?(sin(In(x)))’
= 2xsin(In(x)) + x? cos(In(x))(1/x)

= 2xsin(In(x)) + x cos(In(x)).



