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September 21, 2022



Goals

I Practice with the derivative:
I Use the definition to compute it in specific cases.
I Find the equation of the tangent line.

I Introduce a derivative theorem analogous to the limit theorem
we saw previously.

Announce tomorrow’s math talk.



Review

Average rate of change: f (c + h)− f (c)
h

Instantaneous rate of change: f ′(c) = lim
h→0

f (c + h)− f (c)
h

c

(c, f (c))
(c + h, f (c + h))

c + h



Review

f ′(c) = derivative at c
= instantaneous rate of change of f at c
= slope of f at c



Practice

Suppose the position of a particle along the y -axis is given
by f (x) =

√
x .

What is the average speed of the particle between times x = 1
and x = 4?

solution:

average speed = f (4)− f (1)
4− 1 =

√
4−
√

1
3 = 1

3 .
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Practice
Find the equation for the tangent line to f at x = 1.

solution: We have just calculated the slope of that
line: f ′(1) = 1/2. Therefore, the line has equation y = 1

2x + b for
some b. It passes through (1,

√
1) = (1, 1) when x = 1. Therefore,

1 = 1
2 · 1 + b,

which implies b = 1
2 . So the tangent line has equation

1
2x + 1

2 .

1 2 3 4

1

2

Graph of f (x) =
√

x and its tangent line at x = 1.
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Practice
What is the instantaneous speed at an arbitrary time x .

solution:
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Review

We have just seen that

(
√

x)′ = 1
2
√

x = 1
2 ·

1√
x .

Recall the notation:
√

x = x 1
2 and x−a = 1

xa .

So we have shown (
x

1
2
)′

= 1
2x−

1
2 .

Compare this to the rule we saw last time: (xn)′ = nxn−1 for
n = 1, 2, 3, . . .
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Derivative theorem
Theorem. Suppose f and g are differentiable functions at a
point x .

1. Let c be a real number. The derivative of a constant function
h(x) = c is 0:

(c)′ = 0.

2. Let k(x) = x . Then k ′(x) = 1, i.e.,:

(x)′ = 1.

3. Sum rule: (f (x) + g(x))′ = f ′(x) + g ′(x)
4. The product rule or Leibniz rule:

(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x).

5. The quotient rule.( f (x)
g(x)

)′
= f ′(x)g(x)− f (x)g ′(x)

g2(x) .
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Derivative theorem

Shorthand:

I (c)′ = 0 for all constants c
I (x)′ = 1
I sum rule for derivatives: (f + g)′ = f ′ + g ′

I product rule for derivatives: (fg)′ = f ′g + fg ′

I quotient rule for derivatives:( f
g

)′
= f ′g − fg ′

g2



Consequences of our derivative theorem

Let c be a real number, and let f be a differentiable function. Then

(cf )′ = cf ′.

Proof. Apply the product rule and the fact the derivative of a
constant is 0:

(cf )′ = (c)′f + cf ′ = 0 · f + cf ′ = cf ′

Example. Since (x5)′ = 5x4,

(7x5)′ = 7(x5)′ = 7 · 5x4 = 35x4.
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HW problem

problem. Suppose that limx→0 f (x) = 1. Use the definition of
the limit with ε = 1 to show that there must be some open
interval about 0 such that f (x) > 0 for every x in that interval,
except possibly at x = 0.


