Math 111

September 19, 2022

Goals

- ▶ Use the definition to calculate the derivative.
- ► Find the equation of the tangent line to a function at a given point.

The derivative (instantaneous rate of change)

Definition. The *derivative* of the function f at the point c is

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h},$$

provided the limit exists.

The slope of the orange secant line is $\frac{f(c+h)-f(c)}{h}$.

Average versus instantaneous rate of change

Average rate of change: $\frac{f(c+h) - f(c)}{h}$

Instantaneous rate of change: $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$

Synonyms

```
f'(c) = derivative at c
= instantaneous rate of change of f at c
= slope of f at c
```


Find the derivative of $f(x) = x^2$ at x = 3.

Find the derivative of $f(x) = x^2$ at x = 3.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

Find the derivative of $f(x) = x^2$ at x = 3.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
$$= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h}$$

Find the derivative of $f(x) = x^2$ at x = 3.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
$$= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h}$$
$$= \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h}$$

Find the derivative of $f(x) = x^2$ at x = 3.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h}$$

$$= \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h}$$

$$= \lim_{h \to 0} \frac{6h+h^2}{h}$$

Find the derivative of $f(x) = x^2$ at x = 3.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h}$$

$$= \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h}$$

$$= \lim_{h \to 0} \frac{6h+h^2}{h}$$

$$= \lim_{h \to 0} (6+h)$$

Find the derivative of $f(x) = x^2$ at x = 3.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h}$$

$$= \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h}$$

$$= \lim_{h \to 0} \frac{6h+h^2}{h}$$

$$= \lim_{h \to 0} (6+h)$$

$$= 6.$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2hx + h^2) - x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2hx + h^2) - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2hx + h^2) - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$= \lim_{h \to 0} (2x + h)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2hx + h^2) - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$= \lim_{h \to 0} (2x + h)$$

$$= 2x.$$

So if
$$f(x) = x^2$$
, then $f'(x) = 2x$.

So if $f(x) = x^2$, then f'(x) = 2x. We may also write $(x^2)' = 2x$.

So if $f(x) = x^2$, then f'(x) = 2x. We may also write $(x^2)' = 2x$.

Compute the derivative of $f(x) = x^4$ at an arbitrary point x.

So if $f(x) = x^2$, then f'(x) = 2x. We may also write $(x^2)' = 2x$.

Compute the derivative of $f(x) = x^4$ at an arbitrary point x.

Solution: $f'(x) = 4x^3$. (Work done on the blackboard.)

Compute the derivative of $f(x) = x^n$ at an arbitrary point x where n is a positive integer.

Compute the derivative of $f(x) = x^n$ at an arbitrary point x where n is a positive integer.

Solution: $f'(x) = nx^{n-1}$. (Work done on the blackboard.)

Let m and b be any real numbers. Find the derivative of f(x) = mx + b at an arbitrary point x.

Let m and b be any real numbers. Find the derivative of f(x) = mx + b at an arbitrary point x.

What should it be?

Let m and b be any real numbers. Find the derivative of f(x) = mx + b at an arbitrary point x.

What should it be?

Solution: f'(x) = m. (Work done on the blackboard.)

Definition. The tangent line for f(x) at the point x = c is the line with slope f'(x) and passing through the point (c, f(c)).

Definition. The tangent line for f(x) at the point x = c is the line with slope f'(x) and passing through the point (c, f(c)).

Example. Find the equation for the tangent line for $f(x) = x^2$ at x = 3.

Definition. The tangent line for f(x) at the point x = c is the line with slope f'(x) and passing through the point (c, f(c)).

Example. Find the equation for the tangent line for $f(x) = x^2$ at x = 3.

We saw f'(x) = 2x.

Definition. The tangent line for f(x) at the point x = c is the line with slope f'(x) and passing through the point (c, f(c)).

Example. Find the equation for the tangent line for $f(x) = x^2$ at x = 3.

We saw f'(x) = 2x. So the slope is f'(3) = 6, and the equation has the form y = 6x + b for some b.

Definition. The tangent line for f(x) at the point x = c is the line with slope f'(x) and passing through the point (c, f(c)).

Example. Find the equation for the tangent line for $f(x) = x^2$ at x = 3.

We saw f'(x) = 2x. So the slope is f'(3) = 6, and the equation has the form y = 6x + b for some b. Since the tangent line passes through (3, f(3)) = (3, 9), we have

$$9=6\cdot 3+b.$$

Definition. The tangent line for f(x) at the point x = c is the line with slope f'(x) and passing through the point (c, f(c)).

Example. Find the equation for the tangent line for $f(x) = x^2$ at x = 3.

We saw f'(x) = 2x. So the slope is f'(3) = 6, and the equation has the form y = 6x + b for some b. Since the tangent line passes through (3, f(3)) = (3, 9), we have

$$9 = 6 \cdot 3 + b$$
.

The tangent line has equation y = 6x - 9.

Graph of $f(x) = x^2$ and its tangent line at x = 3.

$$y = 6x - 9$$

Find the equation of the tangent line for $f(x) = x^3$ at x = 2.

Find the equation of the tangent line for $f(x) = x^3$ at x = 2.

Solution: We have $f'(x) = 3x^2$. So $f'(1) = 3 \cdot 2^2 = 12$. The line has equation y = 12x + b for some b. Since the line passes through (2, f(2)) = (2, 8),

$$8 = 12 \cdot 2 + b$$
.

Therefore, b = -16, and the tangent line at x = 2 is

$$y=12x-16.$$