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Goals

I Prove our derivative theorem for combining simple functions
to make complicated functions.

I Use the theorem to compute some derivatives of specific
functions.



Limit theorem

Limit Theorem. Suppose limx→c f (x) and limx→c g(x) exist.

Then
1. limx→c(f (x) + g(x)) = limx→c f (x) + limx→c g(x),
2. limx→c f (x)g(x) = limx→c f (x) limx→c g(x),
3. if limx→c g(x) 6= 0, then

lim
x→c

f (x)
g(x) = limx→c f (x)

limx→c g(x) .
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Derivative theorem

Derivative theorem. Suppose f and g are differentiable functions
at a point x .

Then
1. sum rule:

(f (x) + g(x))′ = f ′(x) + g ′(x),

2. product rule or Leibniz rule:

(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x).

3. quotient rule:( f (x)
g(x)

)′
= f ′(x)g(x)− f (x)g ′(x)

g2(x) .
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Proof of sum formula for derivatives
Claim. If f and g are differentiable at x , then

(f (x) + g(x))′ = f ′(x) + g ′(x).

Proof.

(f (x) + g(x))′ = lim
h→0

(f (x + h) + g(x + h))− (f (x) + g(x))
h

= lim
h→0

(f (x + h)− f (x)) + (g(x + h)− g(x))
h

= lim
h→0

( f (x + h)− f (x)
h + g(x + h)− g(x)

h

)

= lim
h→0

f (x + h)− f (x)
h + lim

h→0

g(x + h)− g(x)
h

= f ′(x) + g ′(x).
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Proof of product rule for derivatives (continued)

Continuing from where we were:
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.

We are done if we can show that

lim
h→0

f (x) = f (x)

and
lim
h→0

g(x + h) = g(x).
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Proof of product rule for derivatives (continued)

First,
lim
h→0

f (x) = f (x)

since the limit is with respect to the variable h and h does not
appear in f (x).

As far limh→0 is concerned, f (x) is a constant, and the limit of a
constant function is the constant, itself.
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Proof of product rule for derivatives (continued)

Next,
lim
h→0

g(x + h) = g(x)

is trickier.

It relies on the following result (which we will not
prove):

Proposition. Differentiable functions are continuous.

In particular, g is continuous.

Leave x fixed, and define a function of h by k(h) = x + h. Since
the composition of continuous functions is continuous, the
following function is continuous:

(g ◦ k)(h) = g(k(h)) = g(x + h).

Therefore,
lim
h→0

g(x + h) = g(x).
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Proof of the quotient rule

For a proof of the quotient rule,( f
g

)′
= f ′g − fg ′

g2 ,

see the lecture notes or our text.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′

= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ =

30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ =

30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ =

30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ =

30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ =

30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ =

30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(
3x4 + x2 − 4x + 2

)′
= (3x4)′ + (x2)′ + (−4x)′ + (2)′

= 3(x4)′ + (x2)′ − 4(x)′ + 2(1)′

= 3(4x3) + (2x)− 4(1) + 2(0)

= 12x3 + 2x − 4.

(6x5 − 4x3 + 12x2 − 7x + 2)′ = 30x4 − 12x2 + 24x − 7.



Example of use of our derivative theorem

(x−1)′ =

(1
x

)′
= (1)′x − 1 · (x)′

x2 = − (x)′
x2 = − 1

x2 = −x−2.

(x−2)′ =
(

1
x2

)′
= (1)′x2−1·(x2)′

(x2)2 = − (x2)′
(x2)2 = −2x

x4 = − 2
x3 = −2x−3.

In general, n = 1, 2, 3, . . .,

(x−n)′ =
(

1
xn

)′
= (1)′xn−1·(xn)′

(xn)2 = − (xn)′
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xn = nxn−1

for n = 0,±1,±2, . . .
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Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:

(
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x4 + 3x + 2
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= (x2)′(x4 + 3x + 2)− x2(x4 + 3x + 2)′

(x4 + 3x + 2)2

= 2x(x4 + 3x + 2)− x2(4x3 + 3)
(x4 + 3x + 2)2

= 2x5 + 6x2 + 4x − 4x5 − 3x2

(x4 + 3x + 2)2

= −2x5 + 3x2 + 4x
(x4 + 3x + 2)2 .
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