


Goals

» Prove our derivative theorem for combining simple functions
to make complicated functions.

» Use the theorem to compute some derivatives of specific
functions.
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Limit theorem

Limit Theorem. Suppose limy_,. f(x) and lim,_,c g(x) exist.
Then

1. Iimxﬁc(f(x) + g(x)) = limy_c F(x) + limy_c g(x),
imy e F(x)g(x) = limyoe F(x) limy—c g(x),

3. if limy_c g(x) # 0, then

f(x) _ limy_c F(x)

x=eg(x)  limescg(x)
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Derivative theorem

Derivative theorem. Suppose f and g are differentiable functions
at a point x. Then

1. sum rule:
(f(x) +g(x)) = f'(x) + &'(x),

2. product rule or Leibniz rule:

(F(x)g(x)) = f'(x)g(x) + f(x)g’(x)-

3. quotient rule:

(f (X))’ _ f'(x)e(x) — f(x)g'(x)
g(x) g2(x) '
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Proof of sum formula for derivatives

Claim. If f and g are differentiable at x, then
(f(x) +&(x)) = f'(x) + &'(x).
Proof.
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Proof of product rule for derivatives

Claim. If f and g are differentiable at x, then

(F(x)g(x)) = f'(x)g(x) + f(x)g'(x).

Proof.
(F(E() = fim [P +hh> — f(x)a(x)
— i [+ Mg+ h)—F(x)g(x + h)+F(x)g(x + h) — F(x)g(x)
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Claim. If f and g are differentiable at x, then

(F(x)g(x)) = f'(x)g(x) + f(x)g'(x).

Proof.

UQEWW=£%f@+MAX7m—“ﬂﬂ@
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= lim
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Continuing from where we were:

W!&Tog(XjL h) +/|7i—r>no £(x) lim glx +h) —g(x)

(F()g(x) = fim lim EE0)

h—0
= F/(x) fim glx + ) + (Jim £(x))g'(x)

< F(x)g(x) + F(x)g'(x).



Proof of product rule for derivatives (continued)

Continuing from where we were:

lim g(x + h) + lim £(x) lim 0 1) =800

f e FOh) — ()
(F()g(x)) = Jim =2 =2 Jim £

h—0 h
= £(x) fim g(x + ) + (lim £(x))g’(x)
< F(x)g(x) + F(x)g'(x).

We are done if we can show that

I|7i£no f(x)=f(x)

and
lim g(x + h) = g(x).
h—0
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Proof of product rule for derivatives (continued)

First,

lim f(x)=f

lim £(x) = (x)
since the limit is with respect to the variable h and h does not
appear in f(x).

As far limp_,o is concerned, f(x) is a constant, and the limit of a
constant function is the constant, itself.
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Proof of product rule for derivatives (continued)
Next,
lim g(x + h) = g(x)
h—0
is trickier. It relies on the following result (which we will not
prove):
Proposition. Differentiable functions are continuous.
In particular, g is continuous.

Leave x fixed, and define a function of h by k(h) = x + h. Since
the composition of continuous functions is continuous, the
following function is continuous:

(g 0 k)(h) = g(k(h)) = g(x + h).

Therefore,
lim g(x + h) = g(x).
h—0



Proof of the quotient rule

For a proof of the quotient rule,

(f)/_ f‘/g_fg/
g g

see the lecture notes or our text.
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Example of use of our derivative theorem

(3 +x% — 4x +2)" = (3 + () + (~4x)' + (2
=3(x*) + (x?) — 4(x) + 2(1)
= 3(4x3) + (2x) — 4(1) + 2(0)

=12x3 + 2x — 4.

(6x5 — 4x3 + 12x2 — Tx +2) = 30x* — 12x2 + 24x — 7.
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oy = (L) = @ity e

X x2 - x2
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oty = (L) 2B 6

= ~ 2

/ /X2_ i X2 ’ X2 /
(sz)/ = (%) = Q) (X2;2( ) _((Xz))g = —




Example of use of our derivative theorem

oty = (LY <@L ey L

— — _2‘
X x2 x2 x2 X
/ 12 1.(x2Y 2y
(X72), = <%) = (1) X(X2;'2(X ) = ((;(2))2 = —i—i = —% = —2X73

In general, n=1,2,3,.. .,

/ IxN—1.(x") xM)/ nx"
(x~") = (xi") (1) X(x";z( ) () '




Example of use of our derivative theorem

(x1y = @: Wx-1-0) _ ) _ 1 _

x2 X2 x2

Qf%,:<%g’:(nw%mu%'_ () _ 2 _ _2

GO A
In general, n=1,2,3,.. .,
oy = () = QLR G e
Therefore,
x" = nx"1

forn=0,+1,4+2,...



Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:



Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:

x2 '
<x4 +3x+2>



Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:

x? / A (X +3x +2) = xP(x* 4 3x + 2)
x*+3x+2) (x* 4+ 3x +2)?



Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:

x? / A (X +3x +2) = xP(x* 4 3x + 2)
x*+3x+2) (x* 4+ 3x +2)?

2x(x* 4 3x +2) — x%(4x3 +3)
(x* + 3x + 2)?




Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:

x? / A (X +3x +2) = xP(x* 4 3x + 2)
x*+3x+2) (x* 4+ 3x +2)?

2x(x* 4 3x +2) — x%(4x3 +3)
(x* + 3x + 2)?

22X+ 6x2 + 4x — 4x° — 3x3
B (x* 4 3x + 2)2




Example of use of our derivative theorem

Here is an example of a computation of the derivative of a typical
rational function using the quotient rule:

x? / A (X +3x +2) = xP(x* 4 3x + 2)
x*+3x+2) (x* 4+ 3x +2)?

2x(x* 4 3x +2) — x%(4x3 +3)
(x* + 3x + 2)?

22X+ 6x2 + 4x — 4x° — 3x3
B (x* 4 3x + 2)2

_ —2x% + 3x? 4 4x
(XA +3x+2)2



