


Continuity

Definition. The function f is continuous at a point ¢ € R if

lim f(x) = f(c).

X—C

If f is continuous at every point, we simply say f is a continuous
function.



Example

Show f(x) = 5x% + 1 is continuous at ¢ = 2.
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Thus, limy_2 f(x) = f(c), as required.
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Example.
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Show f(x) = ;%537 is continuous at ¢ = 1.

Compute, using our limit theorems:

lim 3x2 -5 _ limy—1(3) limy_y1 x limy_1 x + lime_,1(—5)

x=1x3 —=2x+3  limyg xlimyog xlimy_1 x — 2limye1 x + limy—1 3

o 3(1-1)-5 7;27_1
S 1-1-1-2-143 2 7

Thus, limy_1 f(x) = f(c), as required.



Rational functions are continuous

Extrapolating from the previous examples, if f and g are
polynomials, then £ is continuous at any point ¢ such

that g(c) # 0.



Rational functions are continuous

Extrapolating from the previous examples, if f and g are
polynomials, then £ is continuous at any point ¢ such

that g(c) # 0.

For instance,
3x° —7x2+4x+1

x2 —4

is continuous at all real numbers except 2 and —2.




More examples of continuous functions

Most of the functions encountered in high school are continuou
wherever they are defined:

Vx, €%, In(x), cos(x),sin(x), tan(x), etc.
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The following function is not continuous at 0.
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f(X)_{l if x = 0.
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Example

The function

is not continuous at h = 0.




Example

The function

is not continuous at h = 0.

If f is continuous at ¢, then f must be defined at c. In other
words, f(c) must exist.
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Composition of continuous functions

Composition theorem. If f and g are continuous functions, then

lim (f o g)(x) = f(g(c))-

X—C

Proof. Math 112. O

Mantra: The composition of continuous functions is continuous.



Example of composition theorem in action.

Claim. limy_,6 v/x + 3 = 3 (used in the previous lecture).



Example of composition theorem in action.

Claim. limy_,6 v/x + 3 = 3 (used in the previous lecture).
Let f(x) = /x and g(x) = x + 3.



Example of composition theorem in action.

Claim. limy_,6 v/x + 3 = 3 (used in the previous lecture).

Let f(x) = /x and g(x) = x + 3. Since f and g are continuous,
soisfog.



Example of composition theorem in action.

Claim. limy_,6 v/x + 3 = 3 (used in the previous lecture).

Let f(x) = /x and g(x) = x + 3. Since f and g are continuous,
so is f o g. In other words,

(fog)(x) = flg(x)) = f(x +3) = vx +3

is continuous.



Example of composition theorem in action.

Claim. limy_,6 v/x + 3 = 3 (used in the previous lecture).

Let f(x) = /x and g(x) = x + 3. Since f and g are continuous,
so is f o g. In other words,

(fog)(x) = flg(x)) = f(x +3) = vx +3

is continuous. The result follows.



