# Math 111

September 7, 2022

#### Limits

**Definition.** Let f be a function defined in an open interval containing a point c, except f might not be defined at the point c, itself. Let L be a real number. The *limit of* f(x) as x approaches c is L, denoted  $\lim_{x\to c} f(x) = L$ , if for all  $\varepsilon > 0$ , there exists  $\delta > 0$  such if x satisfies

$$0<|x-c|<\delta,$$

then

 $|f(x)-L|<\varepsilon.$ 

# Relevant diagram



 $\lim_{x\to c} f(x) = L$ 



#### **Claim.** $\lim_{x\to 7} 5x - 4 =$

#### **Claim.** $\lim_{x\to 7} 5x - 4 = 31$ .

Claim.  $\lim_{x\to 7} 5x - 4 = 31$ . Proof. Given  $\varepsilon > 0$ ,

Claim.  $\lim_{x\to 7} 5x - 4 = 31$ . Proof. Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ .

**Claim.**  $\lim_{x\to 7} 5x - 4 = 31$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ . Suppose that  $0 < |x - 7| < \delta = \varepsilon/5$ .

**Claim.**  $\lim_{x\to 7} 5x - 4 = 31$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ . Suppose that  $0 < |x - 7| < \delta = \varepsilon/5$ . Then

|(5x-4)-31|

**Claim.**  $\lim_{x\to 7} 5x - 4 = 31$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ . Suppose that  $0 < |x - 7| < \delta = \varepsilon/5$ . Then

$$|(5x - 4) - 31| = |5x - 35|$$

**Claim.**  $\lim_{x\to 7} 5x - 4 = 31$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ . Suppose that  $0 < |x - 7| < \delta = \varepsilon/5$ . Then

$$|(5x - 4) - 31| = |5x - 35| = 5|x - 7|$$

**Claim.**  $\lim_{x\to 7} 5x - 4 = 31$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ . Suppose that  $0 < |x - 7| < \delta = \varepsilon/5$ . Then

$$|(5x-4)-31| = |5x-35| = 5|x-7| < 5 \cdot \frac{\varepsilon}{5}$$

**Claim.**  $\lim_{x\to 7} 5x - 4 = 31$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/5$ . Suppose that  $0 < |x - 7| < \delta = \varepsilon/5$ . Then

$$|(5x-4)-31| = |5x-35| = 5|x-7| < 5 \cdot rac{arepsilon}{5} = arepsilon,$$

as required.

#### **Claim.** $\lim_{x \to 2} -3x - 1 =$

#### **Claim.** $\lim_{x\to 2} -3x - 1 = -7$ .

Claim.  $\lim_{x\to 2} -3x - 1 = -7$ . Proof. Given  $\varepsilon > 0$ ,

Claim.  $\lim_{x\to 2} -3x - 1 = -7$ . Proof. Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/3$ .

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/3$ . Suppose that  $0 < |x - 2| < \delta = \varepsilon/3$ .

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7.$ 

Proof.

Given  $\varepsilon>0,$  let  $\delta=\varepsilon/3.$  Suppose that  $0<|x-2|<\delta=\varepsilon/3.$  Then

|(-3x-1)-(-7)|

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7.$ 

Proof.

Given  $\varepsilon>0,$  let  $\delta=\varepsilon/3.$  Suppose that  $0<|x-2|<\delta=\varepsilon/3.$  Then

|(-3x-1)-(-7)| = |-3x+6|

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7.$ 

Proof.

Given  $\varepsilon>0,$  let  $\delta=\varepsilon/3.$  Suppose that  $0<|x-2|<\delta=\varepsilon/3.$  Then

$$|(-3x-1)-(-7)| = |-3x+6| = |-3(x-2)|$$

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7$ . Proof.

Given  $\varepsilon>0,$  let  $\delta=\varepsilon/3.$  Suppose that  $0<|x-2|<\delta=\varepsilon/3.$  Then

$$|(-3x-1)-(-7)| = |-3x+6| = |-3(x-2)| = 3|x-2|$$

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7$ . **Proof.** Given  $\varepsilon > 0$  let  $\delta = \varepsilon/3$ . Suppose that 0 < |x|.

Given  $\varepsilon>0,$  let  $\delta=\varepsilon/3.$  Suppose that  $0<|x-2|<\delta=\varepsilon/3.$  Then

$$|(-3x-1)-(-7)| = |-3x+6| = |-3(x-2)| = 3|x-2| < 3 \cdot \frac{\varepsilon}{3}$$

**Claim.**  $\lim_{x\to 2} -3x - 1 = -7$ . Proof. Given  $\varepsilon > 0$ , let  $\delta = \varepsilon/3$ . Suppose that  $0 < |x - 2| < \delta = \varepsilon/3$ . Then

 $|(-3x-1)-(-7)| = |-3x+6| = |-3(x-2)| = 3|x-2| < 3 \cdot \frac{\varepsilon}{3} = \varepsilon,$ 

as required.

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = ?$ .

Note that  $x \cos(1/x)$  is not defined at x = 0.

#### **Claim.** $\lim_{x\to 0} x \cos(1/x) = 0.$

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0.$ 



Note that  $x \cos(1/x)$  is not defined at x = 0.

Claim.  $\lim_{x\to 0} x \cos(1/x) = 0$ .

 $\begin{array}{ll} \mbox{Claim.} & \lim_{x \to 0} x \cos(1/x) = 0 \ . \\ \mbox{Proof.} \\ \mbox{Given } \varepsilon > 0, \end{array}$ 

 $\begin{array}{ll} \mbox{Claim.} & \lim_{x \to 0} x \cos(1/x) = 0 \ . \\ \mbox{Proof.} \\ \mbox{Given } \varepsilon > 0, \mbox{ let } \delta = \varepsilon. \end{array}$ 

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon$ . Suppose that  $0 < |x - 0| < \delta$ ;

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \varepsilon$ . Suppose that  $0 < |x - 0| < \delta$ ; in other words, suppose that  $0 < |x| < \delta = \varepsilon$ .

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0$ .

Proof.

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0$ .

#### Proof.

$$|x\cos(1/x) - 0| = |x||\cos(1/x)|$$

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0$ .

Proof.

$$ert x \cos(1/x) - 0 ert = ert x ert ert \cos(1/x) ert \ \leq ert x ert$$

**Claim.**  $\lim_{x\to 0} x \cos(1/x) = 0$ .

Proof.

$$egin{aligned} |x\cos(1/x)-0| &= |x||\cos(1/x)|\ &\leq |x|\ &$$

Claim.  $\lim_{x\to 5} x^2 =$ 

Claim.  $\lim_{x\to 5} x^2 = 25$ . Proof. Given  $\varepsilon > 0$ ,

**Claim.**  $\lim_{x \to 5} x^2 = 25$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ ,

**Claim.**  $\lim_{x\to 5} x^2 = 25.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ .

Claim.  $\lim_{x\to 5} x^2 = 25$ . Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these).

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ .

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ . Since  $\delta \le 1$ , it follows that

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ . Since  $\delta \le 1$ , it follows that 4 < x < 6,

**Claim.**  $\lim_{x\to 5} x^2 = 25.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ . Since  $\delta \le 1$ , it follows that 4 < x < 6, and hence 9 < x + 5 < 11.

**Claim.**  $\lim_{x\to 5} x^2 = 25.$ 

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ . Since  $\delta \le 1$ , it follows that 4 < x < 6, and hence 9 < x + 5 < 11. In particular, |x + 5| < 11.

**Claim.**  $\lim_{x \to 5} x^2 = 25$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ . Since  $\delta \le 1$ , it follows that 4 < x < 6, and hence 9 < x + 5 < 11. In particular, |x + 5| < 11. Therefore,

$$|x^2 - 25| = |(x + 5)(x - 5)| = |x + 5||x - 5| < 11|x - 5|.$$

**Claim.**  $\lim_{x \to 5} x^2 = 25$ .

Proof.

Given  $\varepsilon > 0$ , let  $\delta = \min \{1, \varepsilon/11\}$ , i.e.,  $\delta$  is the minumum of 1 and  $\varepsilon/11$ . So  $\delta \le 1$  and  $\delta \le \varepsilon/11$  (with equality holding in at least one of these). Suppose that x satisfies  $0 < |x - 5| < \delta$ . Since  $\delta \le 1$ , it follows that 4 < x < 6, and hence 9 < x + 5 < 11. In particular, |x + 5| < 11. Therefore,

$$|x^{2}-25| = |(x+5)(x-5)| = |x+5||x-5| < 11|x-5|.$$

Now, since  $\delta \leq \varepsilon/11$  and  $|x-5| < \delta$ , it follows that

$$|x^2-25|<11|x-5|<11\cdot\frac{\varepsilon}{11}=\varepsilon,$$

as required.

#### Suppose that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist.

#### Limit Theorem

Suppose that  $\lim_{x\to c} f(x)$  and  $\lim_{x\to c} g(x)$  exist. Then 1.  $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$ .

#### Limit Theorem

Suppose that  $\lim_{x\to c} f(x)$  and  $\lim_{x\to c} g(x)$  exist. Then 1.  $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$ . 2.  $\lim_{x\to c} f(x)g(x) = \lim_{x\to c} f(x) \lim_{x\to c} g(x)$ .

#### Limit Theorem

Suppose that  $\lim_{x\to c} f(x)$  and  $\lim_{x\to c} g(x)$  exist. Then 1.  $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$ . 2.  $\lim_{x\to c} f(x)g(x) = \lim_{x\to c} f(x) \lim_{x\to c} g(x)$ . 3. If  $\lim_{x\to c} g(x) \neq 0$ , then

$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)}.$$

**Claim.**  $\lim_{x\to 5} x^2 = 25.$ 

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

Proof.

It's easy to show  $\lim_{x\to 5} x = 5$  (and we'll do this next time.)

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

#### Proof.

$$\lim_{x\to 5} x^2$$

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

#### Proof.

$$\lim_{x\to 5} x^2 = \lim_{x\to 5} (x \cdot x)$$

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

#### Proof.

$$\lim_{x \to 5} x^2 = \lim_{x \to 5} (x \cdot x) = \left(\lim_{x \to 5} x\right) \left(\lim_{x \to 5} x\right)$$

**Claim.**  $\lim_{x \to 5} x^2 = 25.$ 

#### Proof.

$$\lim_{x\to 5} x^2 = \lim_{x\to 5} (x \cdot x) = \left(\lim_{x\to 5} x\right) \left(\lim_{x\to 5} x\right) = 5 \cdot 5 = 25.$$