


Limits

Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,c f(x) = L, if for all € > 0, there exists § > 0
such if x satisfies

0<|x—c|] <4,

then
If(x) —L| <e.



Relevant diagram

IimX_>C f(X) - L
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e

2
— 25| < 11|x - 5| < 11-
X2 25| < Ljx =5 < 11+ =

g,

as required. []
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Limit Theorem

Suppose that limy_,c f(x) and limy_,c g(x) exist. Then
1. limyso(F(x) 4+ g(x)) = limg— e F(x) + limy—c g(x).
2. limye F(x)g(x) = limy e F(x) limx_c g(x).

3. If limy—c g(x) # 0, then
f(x)  limycf(x)

I = .
e g(x)  limye g(x)
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Claim. limy_5x2 = 25.

Proof.
It's easy to show limy_5 x =5 (and we'll do this next time.) Then,
using part 2 of the Limit Theorem with f(x) = g(x) = x, we get

lim x? = |im5(x-x)_(|im x) (Iim x) =5.5=25

x—b X— x—b x—5



