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Today

I Course organization.
I To do list for Wednesday’s class.
I Overview of Calculus.



Course organization and To Do list for Wednesday

See our course homepage:

https://people.reed.edu/˜davidp/111/.

https://people.reed.edu/~davidp/111/


Overview of Calculus

The main idea of calculus is to approximate curvy things with
straight things.

It applies this idea to two seemingly unrelated topics: rates of
change and areas.
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I. Derivatives: rates of change

c

Graph of a function g and its best linear approximation at the point c.

The slope of the line gives the rate of change of the function at
the point c.
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Rate of change for time-distance graph = velocity

Imagine a particle moving along the real number line, and let g(t)
be the distance of the particle from the origin at time t.

Then the derivative of g at time t, denoted g ′(t) is the velocity of
the particle at time t.

Desmos demonstration

https://www.desmos.com/calculator/pmbbh13xdh
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Integrals: area under graph

a b

∫ b
a f

The integral
∫ b

a
f is the area under the graph of f from t = a to t = b.



Approximate the area with rectangles
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Approximating the area under the graph of f with rectangles.



Fundamental Theorem of Calculus

There is an essential connection between finding rates of change
and finding areas.

Let g(t) be the distance of a particle from the origin at time t.

Let f (t) = g ′(t) be the rate of change (velocity) of the particle.

Then, ∫ b
a f =

∫ b
a g ′ = g(b)− g(a).

area under f from a to b net change in g

The integral of the derivative gives the net change.
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Summary of goals for Math 111

I What is speed? (derivatives)
I What is area? (integrals)
I How are they related? (Fundamental Theorem of Calculus

(FTC))
I Theory:

I IVT (intermediate value theorem)
I EVT (extreme value theorem)
I MVT (mean value theorem)
I Chain rule, product rule
I FTC.

I Applications:
I Calculate speed and area efficiently.
I Optimization (maximize and minimize functions).
I Related rates.
I Differential equations and population models.



Deep technical definition

Definition. Let f be a function defined in an open interval
containing a point c, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f (x) as x approaches c
is L, denoted limx→c f (x) = L, if for all ε > 0, there exists δ > 0
such that

0 < |x − c| < δ

implies
|f (x)− L| < ε.


