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Limits

Definition. Let f be a function defined in an open interval
containing a point c, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f (x) as x approaches c
is L, denoted limx→c f (x) = L, if for all ε > 0, there exists δ > 0
such if x satisfies

0 < |x − c| < δ,

then
|f (x)− L| < ε.

The definition of the limit contains a huge amount of information.
Unless you have worked with it before—which I am not
assuming—don’t expect to understand it on first reading (or on
the second or third, for that matter).
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make f (x) within ε of L?
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Examples

limx→3 4− x = 1.
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Examples

f (x) =
{

4− x if x 6= 3
0 if x = 3.

1 2 3 4

1
2
3
4

Here, limx→3 f (x) = 1, again. The limit would be the same even
if f were not defined at all at x = 3.
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f (x) = |x − 5]
x − 5 =


1 if x > 5
−1 if x < 5

undefined if x = 5.
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Problem. Prove that limx→3 2x + 5 = 11.

Proof.
Given ε > 0, let δ = ε/2. Suppose that 0 < |x − 3| < δ; in other
words, suppose that 0 < |x − 3| < ε/2. Then

|(2x + 5)− 11| = |2x − 6|
= |2(x − 3)|
= 2|x − 3|

< 2 · ε2
= ε.
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Given ε > 0, let δ = ε. Suppose that 0 < |x − 0| < δ; in other
words, suppose that 0 < |x | < ε. Then, since | cos(y)| ≤ 1 for
all y , we have

|x cos(1/x − 0)| = |x || cos(1/x)|
≤ |x |
< ε.
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