


Limits

Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,c f(x) = L, if for all € > 0, there exists § > 0
such if x satisfies

0<|x—c|] <4,

then
|f(x)—L| <e.
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The definition of the limit contains a huge amount of information.
Unless you have worked with it before—which | am not
assuming—don't expect to understand it on first reading (or on
the second or third, for that matter).
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then
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The distance between real numbers a and b is |a — b|.

So |f(x) — L| < € means the distance between f(x) and the
number L is less than ¢.



Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,. f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c| <,

then
|f(x) — L] <e.



Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,. f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c| <,
then

F(x) - L| < <.

Translation?



Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,. f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c| <,
then

F(x) - L| < <.

Translation?

|x — ¢| < § means



Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,. f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c| <,
then

F(x) - L| < <.

Translation?

|x — ¢| < § means the distance between x and c is less than 4.



Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,. f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c| <,

then
|f(x) — L] <e.

Translation?
|x — ¢| < § means the distance between x and c is less than 4.

0 < |x — c| means



Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,. f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c| <,

then
|f(x) — L] <e.

Translation?
|x — ¢| < § means the distance between x and c is less than 4.

0 < |x — c| means that x # c.
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Definition. Let f be a function defined in an open interval
containing a point ¢, except f might not be defined at the point c,
itself. Let L be a real number. The limit of f(x) as x approaches ¢
is L, denoted limy_,c f(x) = L, if for all £ > 0, there exists § > 0
such that if x satisfies

0<|x—c|] <3,

then
|f(x) — L] <e.

€ is the challenge, and § is the response:

Given a small distance ¢, can you constrain x close enough to ¢ to
make f(x) within ¢ of L?



Relevant diagram

IimX_>C f(X) - L
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Here, limy_,3 f(x) = 1, again. The limit would be the same even
if f were not defined at all at x = 3.
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1 if x>5
-1 if x <5
undefined if x = 5.

_ |x — 5] _
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Problem. Prove that limy_,o x cos(1/x) = 0.

Proof.
Given ¢ > 0, let 6 = £. Suppose that 0 < |x — 0] < d; in other

words, suppose that 0 < |x| < e.
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