Math 387

Homework 7

Due Friday, October 30

Practice exercises from the book

7.22, 7.25, 7.31, 7.34, 7.38

Problems

1. Take DOUBLESAT $=\{\langle\phi\rangle \mid \phi$ is a boolean formula with at least two different satisfying assignments\}. Show that this language is NP-complete.
2. A coloring of a graph is an assignment of way of assigning a color to each vertex so that no two adjacent vertices have the same color. Take $3 C O L O R=\{\langle G\rangle \mid G$ has a coloring that uses only three colors $\}$. Show that $3 C O L O R$ is NP-complete. (Hint: Use the following subgraphs.)

3. Let SET-SPLITTING $=\left\{\langle S, C\rangle \mid S\right.$ is a finite set and $C=\left\{C_{1}, \ldots, C_{k}\right\}$ is a collection of subsets of S such that each element of S can be colored red or blue so that each C_{i} has at least one element of each color\}. Show that this language is NP-complete.
4. Considering the following problem. You have a list of final exams and a list of students. Each student is taking some specified subset of the final exams. Each final exam is a single time slot in length. The problem is to determine if these finals can be scheduled in only h time slots so that no student has two simultaneous exams. Formulate this problem as a language and show that it is NP-complete.

Bonus problems

1. Show that P is closed under the star operation.
2. A regular expression is star-free if it does not contain any star operations. Let $E Q_{S F-R E X}=\{<$ $R, S>\mid R$ and S are equivalent star-free regular expressions $\}$. Show that $E Q_{S F-R E X} \in$ coNP. Why does the argument fail for general regular expressions?
