# Math 387 

## Homework 6

Due Wednesday, October 14

## Practice exercises from the book

## $7.1,7.2,7.7,7.11,7.13,7.19$

## Problems

1. Take $M O D E X P=\left\{\langle a, b, c, p\rangle \mid a, b, c\right.$ and $p$ are binary integers and $\left.a^{b} \equiv c(\bmod p)\right\}$. Show that $M O D E X P \in P$. (Hint: The obvious algorithm doesn't run in polynomial time. Try it first where $b$ is a power of 2.)
2. Show that $P$ is closed under union, concatenation, and complement.
3. Let $3 C O L O R$ be the set of 3-colorable graphs. That is, $3 C O L O R=\{<G>\mid G$ is a graph, and we can assign each node of $G$ one of three colors such that no two nodes of $G$ that are connected by an edge have the same color) $\}$. Show that $3 C O L O R \in N P$.

## Bonus problems

1. Show that if $P=N P$ we can construct a polynomial-time algorithm to find a satisfying assignment for a given satisfiable boolean formula. (Note: If $P=N P$ that means that $S A T$ is in $P$, but $P$ as we have defined it contains languages, and machines give yes/no answers. What you are being asked to do here is create a machine that computes a function. You can think of this as a Turing machine that starts with the input on its tape, and then eventually halts with the ouptut of the function on its tape instead.)
