Math 387

Homework 3

Due Friday, September 25

Practice exercises from the book

$2.1,2.4,2.5,2.6,2.9,2.10,2.15$

Problems

1. For each of the following languages, give a CFG that generates the language. In all cases $\Sigma=\{0,1\}$.
(a) $L=\{w \mid w$ contains at least three 1 s$\}$.
(b) $L=\{w \mid w$ has odd length and its middle symbol is 0$\}$.
(c) $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$.
(d) $L=\{w \mid w$ has exactly twice as many 0 s as 1 s$\}$.
2. Draw the state diagram of a PDA that accepts each of the following languages. In all cases $\Sigma=\{0,1\}$.
(a) $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$.
(b) $L=\{w \mid w$ contains more 0 s than 1 s$\}$.

Bonus problems

1. Let G be the following CFG:

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b}|\mathrm{~b} Y| Y \mathrm{a} \\
& Y \rightarrow \mathrm{~b} Y|\mathrm{a} Y| \epsilon
\end{aligned}
$$

Give a simple English description of the language of G. Use this description to give a CFG that recognizes the complement of that language.
2. $L=\{x y| | x|=|y|$ and $x \neq y\}$.
(a) Give a CFG that generates the language L.
(b) Give a PDA that accepts the language L.

