Math 387

Homework 1

Due Friday, September 18

Practice exercises from the book

$1.18,1.20,1.29,1.46$

Problems

1. For each of the following languages, give a regular expression that represents the language. In all cases $\Sigma=\{0,1\}$.
(a) $L=\{w| | w \mid \leq 5\}$
(b) $L=\{w \mid w$ does not contain the substring 001$\}$
2. Show that the class of regular languages is close under intersection. That is, if A and B are both regular languages, then so is $A \cap B$.
3. For each of the following languages, prove either that it is regular or that it is not regular. In all cases $\Sigma=\{0,1\}$.
(a) $L=\{w \mid w$ contains an equal number of 0 s and 1 s$\}$
(b) $L=\left\{1^{k} y \mid y \in \Sigma^{*}, k \geq 1\right.$, and y contains at least $\left.k 1 \mathrm{~s}\right\}$
(c) $L=\left\{1^{k} y \mid y \in \Sigma^{*}, k \geq 1\right.$, and y contains at most $\left.k 1 \mathrm{~s}\right\}$
4. Consider the language $L=\left\{0^{i} 1^{j} 2^{k} \mid i, j, k \geq 0\right.$ and if $i=1$ then $\left.j=k\right\}$.
(a) Show that L is not regular.
(b) Show that L does not look irregular as far as the pumping lemma goes. That is, give a pumping length p and show that L satisfies the conditions of the pumping lemma.
(c) Explain why the two things you've shown above do not contradict.

Bonus problems

1. Let $A / B=\{w \mid w x \in A$ for some $x \in B\}$. Show that if A and B are regular, then A / B is regular.
2. Our goal in this problem is to show that the representation of objects can affect whether or not a given set can be recognized by a machine. Consider a st A of natural numbers. Let $B_{k}(A)$ be the set of strings that represent numbers from A in base k (with no leading zeros). For example, if $A=\{3,5\}$ then $B_{2}(A)=\{11,101\}$ and $B_{3}(A)=\{10,12\}$. We can think of $B_{k}(A)$ as a language with a k-symbol alphabet. Give a set A for which $B_{2}(A)$ is regular but $B_{3}(A)$ is not (and prove it).
