Math 387

Homework 1

Due Friday, September 11

Practice exercises from the book

$1.1,1.2,1.3,1.6,1.7,1.11,1.14$

Problems

1. For each of the following languages, give a DFA that recognizes the language. In all cases $\Sigma=\{0,1\}$.
(a) $L=\{w \mid w$ is any string other than 11 or 111$\}$
(b) $L=\{w \mid w$ contains the substring 001 $\}$
(c) $L=\{w \mid w$ has length at least 3 and has 0 for the third symbol $\}$
(d) $L=\{w \mid w$ has a 1 in every odd position $\}$
(e) $L=\{w \mid w$ a multiple of 31 s or an even number of 0 s$\}$
(f) $L=\{w \mid w$, when thought of as a binary number, is a multiple of 7$\}$
2. For each of the following languages, give a NFA that recognizes the language using no more than the listed number of states. In all cases $\Sigma=\{a, b, c\}$.
(a) $L=\{\epsilon\}, 1$ state
(b) $L=\{w \mid w$ ends in aa $\}, 3$ states
(c) $L=\{w \mid w$ contains a multiple of 3 a's or a multiple of 4 b 's $\}, 8$ states
(d) $L=\{w \mid w$ ends in the first occurrence of some symbol $\}, 5$ states

Bonus problems

1. In class we showed that any n-state NFA can be converted to a 2^{n}-state DFA. Show that this bound is roughly tight. Specifically, show that for every n there exists a language that can be recognized with an $n+1$-state NFA but cannot be recognized by a DFA with fewer than 2^{n} states.
