Math 387

Homework 1

Due Friday, September 12

Practice exercises from the book

$1.1,1.2,1.3,1.6,1.7,1.11,1.14,1.18,1.20$

Problems

1. For each of the following languages, give a DFA that recognizes the language. In all cases $\Sigma=\{0,1\}$.
(a) $L=\{w \mid w$ is any string other than 11 or 111$\}$
(b) $L=\{w \mid w$ contains the substring 001 $\}$
(c) $L=\{w \mid w$ has length at least 3 and has 0 for the third symbol $\}$
(d) $L=\{w \mid w$, when thought of as a binary number, is a multiple of 7$\}$
2. For each of the following languages, give a NFA that recognizes the language using no more than the listed number of states. In all cases $\Sigma=\{a, b, c\}$.
(a) $L=a^{*}\left(b b a a^{*}\right)^{*}, 3$ states
(b) $L=\{w \mid w$ ends in aa $\}, 3$ states
(c) $L=\{w \mid w$ ends in the first occurrence of some symbol $\}, 5$ states
3. For each of the following languages, give a regular expression that represents the language. In all cases $\Sigma=\{0,1\}$.
(a) $L=\{w| | w \mid \leq 5\}$
(b) $L=\{w \mid w$ does not contain the substring 001 $\}$
4. Show that the class of regular languages is close under intersection. That is, if A and B are both regular languages, then so is $A \cap B$.

Bonus problems

1. In class we showed that any n-state NFA can be converted to a 2^{n}-state DFA. Show that this bound is roughly tight. Specifically, show that for every n there exists a language that can be recognized with an $n+1$-state NFA but cannot be recognized by a DFA with fewer than 2^{n} states.
2. Let $A / B=\{w \mid w x \in A$ for some $x \in B\}$. Show that if A and B are regular, then A / B is regular.
