Math 382

Homework 9

Due Friday, April 15

1. For Kruskal's algorithm, answer each of the following questions.
(a) If the edge weights in the graph were all all integers in the range from 1 to $|V|$, could you improve the algorithm? If so, how and how fast would it be?
(b) If the edge weights in the graph were all all integers in the range from 1 to W, where W is a constant, could you improve the algorithm? If so, how and how fast would it be?
(c) If the edge weights in the graph were each randomly chosen from a uniform distribution on $[0,1)$, could you improve the algorithm? If so, how and how fast would it be?
2. Answer the same questions as above, this time for Prim's algorithm.
3. Say we have a graph G and have already computed a minimum spanning tree T. Now G is modified by reducing the weight of one of the edges. Give an algorithm that an find a minimum spanning tree for this newly modified graph. It should be faster than what would be required to recompute the tree from scratch.
