Math 382

Homework 5

Due Friday, March 20

1. Say we have a set of n items and want to build a binary search tree. Knowing nothing about the data, we can only interact with it through comparisons. Show that any algorithm that builds a binary search tree must take at least $\Omega(n \log (n))$ time.
2. In class we gave pseudocode for finding the successor of a given node in a binary search tree. Write the pseudocode for finding the predecessor, the node with the highest value less than that of the given node.
3. Given two nodes x and y that we wish to delete from a binary search tree, we could first delete x and then y or vice versa. Will the order of deletions affect the resulting tree? Prove that it won't or give a counterexample where it will.
4. Consder a red-black tree with n nodes created by calling the insert function n times. Show that as long as $n>1$, the tree will always have at least one red node.
5. Consider a red-black tree that begins empty. We then insert in order the keys $41,38,31,12,19,8$. We then delete each key in the order $8,12,19,31,38,41$. Draw the tree that exists at each step of this process. (Please be careful to give yourself plenty of room and draw these trees clearly.)
