Math 382 ## Homework 1 ## Due Wednesday, February 4 - 1. Prove that $125n^2 + 30 \in \Omega(n^2)$. (Do this directly from the definition of $\Omega(\cdot)$. Do not use results we proved in class about polynomials.) - 2. Rank the following functions by order of growth. That is, create a list f_1, f_2, \ldots such that $f_1 \in O(f_2), f_2 \in O(f_3), \ldots$ Circle in your list groups of functions that are equivalent (i.e., $f_i \in \Theta(f_{i+1})$). | $2^{\log_5(n)}$ | n^2 | n! | $(n+1)^2$ | $(3/2)^n$ | |-----------------|---------------|--------------|---------------------|---------------| | n^3 | $\log_2^2(n)$ | $35n^2 + 15$ | $\log_2(\log_2(n))$ | $n \cdot 2^n$ | | $\log_2(n)$ | 1 | 3^n | (n+1)! | \sqrt{n} | | 2^n | $\log_5(n)$ | n^n | $\log_4(n^2)$ | $n\log_2(n)$ | | 4n | n^{100} | $n^3 + n^2$ | 2^{2n} | 2^{n+3} | - 3. Let f(n) and g(n) be nonnegative functions. Prove or disprove each of the following statements: - (a) $\max(f(n), g(n)) \in \Theta(f(n) + g(n))$ for all f(n), g(n). - (b) $f(n) + g(n) \in \Theta(f(n))$ for all f(n) and $g(n) \in o(f(n))$. - (c) $f(n) \in \Theta(f(n/2))$ for all f(n). - (d) $f(n)^2 \in \Theta(g(n)^2)$ for all g(n) and $f(n) \in \Theta(g(n))$. - 4. Prove that if f(n) and g(n) are nonnegative functions, then $f(n) \in o(g(n))$ if and only if $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$.