Math 382

Homework 1

Due Wednesday, February 4

- 1. Prove that $125n^2 + 30 \in \Omega(n^2)$. (Do this directly from the definition of $\Omega(\cdot)$. Do not use results we proved in class about polynomials.)
- 2. Rank the following functions by order of growth. That is, create a list f_1, f_2, \ldots such that $f_1 \in O(f_2), f_2 \in O(f_3), \ldots$ Circle in your list groups of functions that are equivalent (i.e., $f_i \in \Theta(f_{i+1})$).

$2^{\log_5(n)}$	n^2	n!	$(n+1)^2$	$(3/2)^n$
n^3	$\log_2^2(n)$	$35n^2 + 15$	$\log_2(\log_2(n))$	$n \cdot 2^n$
$\log_2(n)$	1	3^n	(n+1)!	\sqrt{n}
2^n	$\log_5(n)$	n^n	$\log_4(n^2)$	$n\log_2(n)$
4n	n^{100}	$n^3 + n^2$	2^{2n}	2^{n+3}

- 3. Let f(n) and g(n) be nonnegative functions. Prove or disprove each of the following statements:
 - (a) $\max(f(n), g(n)) \in \Theta(f(n) + g(n))$ for all f(n), g(n).
 - (b) $f(n) + g(n) \in \Theta(f(n))$ for all f(n) and $g(n) \in o(f(n))$.
 - (c) $f(n) \in \Theta(f(n/2))$ for all f(n).
 - (d) $f(n)^2 \in \Theta(g(n)^2)$ for all g(n) and $f(n) \in \Theta(g(n))$.
- 4. Prove that if f(n) and g(n) are nonnegative functions, then $f(n) \in o(g(n))$ if and only if $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$.