Project 2: Mapping tweets

In this project you will be analyzing data taken from Twitter. The goal is to produce a map that
shows how popular tweets about a given topic are in each state. Some of the work —
specifically the parts that involve reading from files and drawing graphics — has been done for
you. What you need to do is the data analysis. You’ll need to make a data abstraction, as well
as work with existing data abstractions, lists, dictionaries, and strings. In the end, you'll be able
to create maps like the one below, which shows how frequently people in each state are
posting tweets containing the word “beach”, with darker blues representing more tweets (per

capita).

Begin by downloading project2.zip from the course website. This is a zip file, which you should
unzip to create a directory. That directory should include the following files.

trends.py A framework for implementing the data analysis. This is the file where you
will do all your work.

geo.py A data abstraction for geographic positions, as well as functions for map
projections and other useful geometric calculations.

maps.py Functions for drawing maps.

data.py Functions for loading Twitter data from files.

graphics.py

A simple Python graphics library.




There should also be a “data” subdirectory, which contains the necessary data. (This is mostly a
raw database of tweets, but also data representing the location of state borders.)

Exercise 1: The tweet data abstraction

This project uses a “tweet” data abstraction. A tweet consists not just of the actual text of the
tweet, but also data about the time at which it was sent and the location from which it was
sent. The trends.py file includes the constructor for this data abstraction, but the selectors are
not yet complete. You must complete the constructors, tweet text, tweet time, and
tweet location. Notethat tweet location returnsa position. The position data
abstraction has already been implemented for you. Look in geo.py to see how it works.
Remember to respect abstraction barriers when working with positions (and later in the
assignment, when working with tweets).

Exercise 2: check_intersect

In order to color the states in our map, we need to know how many tweets of a given type lie
inside that state. To do that, we need a function that will take a tweet and a state and tell us
whether the tweet is inside that state. The algorithm we will be using is the ray casting
algorithm, which you should read about at http://en.wikipedia.org/wiki/Point_in_polygon.

The algorithm works by taking a ray that shoots out in one direction from the point in question.
In our case we’ll be using a ray that points due east. (That makes the math simpler.) The
algorithm asks how many times the ray intersects the edge of the shape/state. The end of the
ray must be outside the shape, so the point is inside the shape if and only if the number of
intersections is odd.

We have very high-precision locations, so we are going to simplify the problem some by
assuming that the ray never passes through the point where two edges of the shape meet, and
that the point is never on the edge of the polygon. We are also going to assume that we can
treat the surface of the earth as flat, with longitude and latitude representing coordinates in a
coordinate plane.

In order to find the number of intersections, we will check each edge of the polygon(s) that
represent a given state and find out if that edge intersects with the ray. In order to do this, you
must first implement check intersect. This function takes as input three locations. The
first is the point from which the ray is shooting east. The next two are two endpoints of a line
segment. The function should return True if the ray intersects the line segment and False
otherwise.

Hints for writing check intersect:



The ray in question only points east, but you can think of it as part of an infinite line along that
line of latitude. Checking whether the line segment in question crosses that line at all is a much
easier problem. If it does cross the relevant line of latitude, then you can calculate the exact
point where it crosses. (This is just the intersection of a line given by two points and a
horizontal line — you might need to refresh yourself on some high school algebra you haven’t
used in a while.) You can then check whether the point of intersection is east or west of the
start of the ray and return True or False accordingly.

Exercise 3: is in state

Now use check intersect towriteis in state, which takes a point and a state and
returns True or False depending on whether the point is in the state in question. A state is
represented as a list of polygons. Each polygon is represented as a list of locations representing
the corners (in order) of the state. The first location in a polygon is repeated at the end, so that
any two consecutive points represent a line segment in the border of the state. To check
whether a point is in a polygon, step through each line segment in the border of the polygon
and use check intersect to see if the ray coming out of the point intersects that line
segment. Count how many it intersects, and if the number is odd, the point is in that polygon.
A point is in a state if it is in one of the polygons that make up that state.

Exercise 4: count tweets by state

We now need to figure out what color to make each state. You can use the us states
variable, which contains a dictionary. The keys of the dictionary are two-letter postal codes for
each state. The values are lists of polygons representing the shape of the corresponding state.
(Some states, like Hawaii or Michigan, are not single connected pieces of land, so we need
multiple polygons for these states.) This function should take as input a list of tweets. Its
output should be a new dictionary, again with state abbreviations as the keys.

You should start by getting the output dictionary to include as values the number of tweets in
the list that were in the given state. To do this, usetheis in state function. You should
be able to take each tweet, search through the dictionary seeing if it is in each state, and then
add one to the count of tweets in whatever state it finds. (Some tweets are not in any state,
and you should ignore those.)

Now if we left counts that way, the darkest states would always be California and Texas.
Instead we want to color states by how many tweets in the list were there, compared to the
population of the state. You should the us_state pop dictionary, which has the same keys
(two-letter abbreviations) and has as its values the population of each state. Update your
output dictionary by dividing each number of tweets by the population of that state. This gives
you a per-capita number of tweets.



Finally, we need to normalize these numbers. We want to always color the state with the most
per capita tweets dark blue, with all other states colored accordingly. That means we need to
“normalize” the values, scaling them so that they are on some predictable scale. You should
find the maximum value that any state has and divide all states by that value. That will mean
that the state with the most per capita tweets will have value 1, and all other states will have
values between 0 and 1, with a value of .5 meaning that it has half as many tweets as the
maximal state, etc. The dictionary with these values is the final output of the function, and
those values are used to color the map.

Exercise 5: Tweets about Canada

Before counting the queries for each state, the program must filter only the tweets we are
interested in (say, with a given word in them). It does this using a “query” function, which takes
as input a string, the text of a tweet, and returns True or False. The program filters out
tweets that cause the query to output False, and count tweets by state will be run
on a list of only those tweets that cause the query to return True. You should implement
canada_query, which returns True if the text contains the word “canada”. This function
should ignore the case of both the tweet text and the word “canada”. (For example, a tweet
that contains “CANada” should be accepted.) In order to do this, you might need to look up
some simple operations on strings in the Python documentation. If this is done correctly, you
should now be able to run the line draw_map for query(canada query) atthe end of
the program and create the map below, which unsurprisingly shows that in general people who
live near the Canadian border tweet about Canada more often.




Exercise 6: make searcher

It’s not just “canada” that we care about. Searching for tweets with a particular string of text in
them is a very reasonable type of query. To facilitate this, implement make searcher,
which takes as input a string term and outputs a function that will return True on strings that
have term as a substring. For example,

draw map for query(make searcher (“canada”))should returnthe same map
you got for canada query, and

draw map for query(make searcher (“beach”)) should return the map shown at
the beginning of this assignment.

Exercise 7: mexico query

Sometimes we need more complicated queries. We could try to do exactly the same thing as
before, but about Mexico rather than Canada. You should try this usingmake searcher.
What you will find is that there are so many tweets about New Mexico that tweets about
Mexico are drowned out. What we need is a query function that accepts tweets that include
“mexico” but not tweets that also include “new”. You should implement this as

mexico query. Using this query should give you the following map.




Exercise 8: Explore

Play around with other queries. You should find two queries not mentioned here that give
interesting results. Print out those maps, along with a short explanation of what query created
them (and maybe why you find them interesting). In order to print the maps, you will need to
use the print-screen functionality of your operating system and copy them to a file. The
program does not support printing maps directly.

Submit
The printed maps from exercise 8 should be turned in (stapled!) in class. You should also
upload your edited trends.py file to the relevant problem on the homework submission

website. (You don’t need to upload the other files.) You can only submit this file once.

Congrats! You're done.

Acknowledgements

This project is a modified version of a project originally developed by Aditi Muralidharan, John
DeNero, and others at UC Berkeley. It, like that project, is licensed under the Creative
Commons Attribution-ShareAlike 3.0 Unported License.



