Project 1: A Game of Greed

In this project you will make a program that plays a dice game called Greed. You start only with
a program that allows two players to play it against each other. You will build tools that let
computer players play the game against each other, as well as tools that help you figure out
how good different computer players are. Then you will write your own strategy function,
which you’ll use to compete against some test players | have written for you, as well as your
classmates. Have fun!

Rules of the game

The game of Greed is a dice game between two players. The dice in question differ from
regular dice in that they give numbers between 0 and 5, instead of between 1 and 6. The game
begins with both players having a score of zero and proceeds in turns. The player whose turn it
is can choose any number of dice to roll. They then roll those dice (all at once) and add the
total of the dice to their score. If they go over 100, the other player is declared the winner. (A
score of exactly 100 is acceptable.) Play then passes to the other player, who does the same.
Play alternates in this manner until either one player goes over 100 and loses or a player
chooses to pass. When a player passes (that is, rolls zero dice on their turn) the other player
gets one more turn to roll, and then the game is over. If at that point neither player has gone
over 100, the player with the higher score wins. (Ties are possible.)

Step 1: experiment

You should first work to understand the game. The included play function conducts a game
between two human players, both typing their moves into prompts in the terminal. You should
play several games with a friend (or just against yourself) to get a feel for the game. You should
then look at the code for play and try to understand how it works. (It is purposefully not
documented very well.)

Step 2: autoPlayLoud

We want to have programmed strategies play this game against each other, rather than just
having humans play it. pr1.py contains a sample strategy, a function named samplel. This
strategy, like all other strategies we will write, takes three inputs. Those inputs represent the
current state of the game the strategy is playing. The strategy takes those inputs and outputs
the next move (that is, how many dice to roll). The first input is an integer representing the
strategy’s current score. The second input is an integer representing the opponent’s current



score. The third input is a Boolean indicating whether the opponent passed on their last turn,
which would mean that this roll is the last of the game.

You should look at the sample strategy, samplel. Itis very simple —it passes if it’s currently
ahead, and otherwise it rolls 12 dice. Unfortunately, we can’t actually watch it play a game
given the code currently in the file.

Your job is to implement autoplayLoud, which should work similarly to p1lay, except that it
conducts games between two computer strategies instead of two people. It should still print a
record of the game to the terminal, but instead of asking for moves it should take as input two
strategies and use those strategies to compute the move at each turn. (The strategy in the first
argument should be “player 1” and should go first, and the other strategy should be “player 2”.)
To test your function, try running autoplayLoud (samplel, samplel), which should
conduct a game between two players each using samplel as their strategy. An example of
what this should print to the terminal is below. (It is not necessary to have autoplayLoud
return a value.) You can look at the code for play to get a general idea of what it should look
like.

Player 1: O Player 2: 0

It is Player 1's turn.

12 dice chosen.

Dice rolled: 3452321015214
Total for this turn: 32

Player 1: 32 Player 2: O

It is Player 2's turn.

12 dice chosen.

Dice rolled: 4 242 41314015
Total for this turn: 31

Player 1: 32 Player 2: 31
It is Player 1's turn.

0 dice chosen.

Dice rolled:

Total for this turn: O

Player 1: 32 Player 2: 31

It is Player 2's turn.

12 dice chosen.

Dice rolled: 034110425022
Total for this turn: 24

Player 1: 32 Player 2: 55

Player 2 wins.



Step 3: autoplay

Having the transcript of the game printed to the terminal is great when we’re running one
game at a time, but when we really want to know which strategy is better, we’ll want to take a
sample of thousands of games. To do this, create autoplay, function that does roughly the
same thing as autoplayLoud. The difference is that instead of printing the transcript of the
game to the terminal, the simulation is done “quietly”. The function should return a value that
indicates the winner of the game. 1 should be returned if the first player (the strategy listed in
the first argument) wins, 2 if the second player wins, and 3 if there is a tie.

Step 4: manyGames

We now want to be able to compare strategies. Any single game is going to include a lot of
luck, and possibly a big advantage for one side based on who goes first. The function
manyGames gives us a much more reliable way to compare strategies. It takes as input two
strategies (the first referred to as “player 1”) and an integer n. It then runs autoplay ntimes,
with each player going first for half of those times (or as close as possible if nis odd). It keeps
track of wins and ties, and prints a summary at the end as shown below.

Player 1 wins: 496

Player 2 wins: 503

Ties: 1

You should implement manyGames. You can test it using samplel. (The output above
comes from running manyGames (samplel, samplel, 1000) andis typical of what
output from that function call should look like. Remember that there are random numbers
involved here, so the output will be slightly different each time.)

Step 5: another strategy

Now you will write a strategy. It should behave as follows:

* |fits current score is no more than 50, it should roll 30 dice

* |fit's current score is between 51 and 80, it should roll 10 dice

* |fthe score is above 80, it should pass
This should be written in the function sample2. You should then experiment to see how it
compares to samplel. (You should find that in large samples it consistently beats samplel.
If you don’t, you have an error somewhere.)



Step 6: improve

One thing that’s very clear about any good strategy is that it will never roll when its score is
already 100. (Such a role would risk going over and losing, and it couldn’t possibly help.)
Unfortunately, some strategies might roll even in this situation. Write the function improve
so that it adds this check to another function. That is, improve should take a strategy
function as input, and it should output another strategy function. The output should behave
exactly as the input strategy would, except that why the player’s score is 100, it should pass,
regardless of what the input strategy would have done.

Step 7: compete

Now it’s time for the big project, writing your own strategy. This one is completely up to you.

It can work in any way you want, but your goal is to make the strategy as good as possible. Be
creative. Try lots of things. Tweak the strategy a lot — change a couple little details can have a
big effect. Remember also that the difference between a decent strategy and a really good one
can look like a small effect on the win percentage. Say one strategy has a 60% win rate against
a given opponent, while another has a 58% win rate against the same opponent. The first
might win very decisively when the two strategies compete against each other. You should try
writing several strategies that take substantially different approaches and then see which one
performs best. In the end, you should have one strategy that you are willing to stand behind,
written in the myStrategy function of the program. The strength of that strategy will be a
factor in your grade for this assignment, and it is also the strategy that will be entered for you in
the class tournament. Remember, the resulting function might not be extremely long, but that
doesn’t mean you shouldn’t put a lot of work into figure out exactly what will work best.

Technical rules on how the strategies behave:

* The function must compute the next turn from scratch each time it is called. (In
particular, you cannot write to a file to save computation from previous calls.)

* Similarly, you cannot compute moves in some other way and attempt to write out all
possibilities in your function definition.

* The strategy must be pretty fast. Running
prltesting.testStrat (myStrategy, 10000) (described below)should
take no more than 30 seconds. How fast things actually take obviously depends on the
particular computer they are run on. The time limit is intended to not be a hindrance to
most things you might reasonably do. If you're worried about your strategy taking too
long, talk to me.

Everything you write should be well-documented, but this is particularly true of your strategy.
Write comments that explain what it is doing and (if not self-explanatory) why that is a
reasonable thing to do.



Several tools have been provided to help you write your strategy. The prltesting module,
contained in prltesting.pyc, contains ten strategies of varying quality for you to test
yours against. You are not, however, allowed to look at prl1testing.pyc. (It will just look
like gibberish anyway, but trying to decipher the gibberish is forbidden.) There is an import
command already in the file. You can run a strategy by referring to, for example,
prltesting.testo6 (for the sixth of the nine test strategies). That means that you could
run manyGames (myStrategy, prltesting.test8, 10000) tosee asample of
10,000 games between your strategy and the eighth test strategy. There is also a single
command, prltesting.testStrat (myStrategy, 10000), that will run consecutive
tests against all nine of the test strategies. You can also watch games between your strategy
and the test strategies (or two of your strategies, two of the test strategies, etc.) using the
autoplayLoud function.

You should try to get your strategy to beat as many of the test strategies as possible. Your
strategy will not be judged by the margin of victory over the tests, just whether it beats them.
(For example, it is much better to have a strategy that consistently edges out wins over all nine
tests than one that decisively beats six of them but loses to the other three.)

We will also hold a tournament between the strategies submitted by the class. Again, in the
tournament all matches will be large runs of manyGames and only who wins the match will
matter to the outcome. The outcome of the tournament will not affect your grade. (Though
there will be some small prizes...)

Submitting

You will submit your work online. There are three problems that you will see in the Project 1
problem set. The first is where you submit your main prl.py file with everything in it. This file
is not checked by the system. You will see a 0/0 score on it. (The TAs and | will be reviewing
the projects by hand.) The next problem is where you should submit your strategy. This should
be the same strategy from your prl.py file, stillnamed myStrategy. Include nothing else in a
file but this one strategy definition and submit that file there. When you do so, it will be played
against the test strategies one official time and you will be told how your strategy did. (This
might take a minute or two, so be patient.) Each of these problems can only be submitted one
time. Check your work first and be sure it is your final, correct submission before you upload it
to the site.

There is one more problem on the site. This is for timing your strategy. You should be able to
get a rough idea on your own, but because every computer varies slightly in speed, we have
created this as a central way to check that your strategy is fast enough. When you submit a
strategy to this problem, it will be run and timed, and you will be told if it is fast enough. You
can submit a strategy to this problem as often as you would like. It is worth no points. You
should make sure you have timed your final strategy function using this before submitting it.



