
Efficiency

This homework should be done on paper and turned in. I prefer you type as much as possible,
especially the python code, but some things (like Exercise 1) might be easier to handwrite.
Make sure your name is on it and turn it in in class.

Exercise 1

The following is a series of run times that represent the time it takes various algorithms to
finish. You should sort these run times from fastest to slowest, considering only the asymptotic
relationship between the run times. (Here “fastest” refers to the algorithm, so log(n) is “faster”
than 2n.) If there are sets of run times that are asymptotically equal, put them next to each
other in arbitrary order and circle them to show that they’re equivalent.

𝑛2, log3(𝑛), log10(𝑛)
2, 2𝑛+1, √𝑛, 3𝑛, 7𝑛3 + 10𝑛, 5𝑛, log5(𝑛), 1000, 2𝑛, 2𝑛/2, 𝑛 log2(𝑛), 4𝑛

3

Instructions for the following exercises

In the following exercises you are given a function. You should write code for each function.
You should then also write an analysis of the running time of the function you have written.
That is, you should say what its asymptotic runtime is, along with a short description of how
you know that. Any correct solution that is correctly analyzed will get full credit. However,
there are multiple ways to write these functions, and they don’t all have the same (asymptotic)
runtime. There will be bonus points if you find the faster ways of doing them.

Exercise 2: longPalSub

The function longPalSub should return the longest palindromic substring of its input string.

For example, if the input is “cbcbaabaca” the output should be “baab” because that is the
longest substring of the input that is a palindrome. (A palindrome is a string that reeds the
same forward and backwards. “cbc”, for example, is also a palindrome but is too short.) If
there is a tie for the longest palindromic substring in the input, the function can output any of
the tied substrings arbitrarily.

Exercise 3: twoSum

The function twoSum is given as input a list of integers and a target value. The function should
return True if there are two numbers in the list that add up to the target value and False
otherwise. For example, twoSum([-4, 7, -2, 1, 3], -1) should return True
because -2 and 1 (or -4 and 3) sum to -1. If the target was 6 instead of -1, it should return
False.

Exercise 4: threeSum

The function threeSum is identical to twoSum, except that it checks for a set of three
numbers that sum to the target in question, rather than two.

Exercise 5: maxSubarray

The function maxSublist takes as input a list of integers and returns the sublist that has the
maximum total sum (again, breaking ties arbitrarily). For example
maxSublist([2,1,−3,4,−1,2,1,−5,4]) returns [4,-1,2,1] because the sum
of that sublist (6) is the largest possible.

