

Math 121: Introduction to Computing
Fall 2014

Basic information

Professor: Adam Groce, agroce@reed.edu

Class schedule: Class meets Monday, Wednesday, and Friday. Lab meets Thursday. Make sure

you know which section of each you are in and its time and location.

Office hours: I hold office hours (in Library 390) Monday 9-11, Wednesday 3-4, Thursday 10-11,

and Friday 10-11. I can also meet with you by appointment if those times are bad or if you

would like to discuss something privately. You are also welcome to stop by other times, but I

might be busy.

Website: The course website is http://people.reed.edu/~agroce/math121/. Homework,

projects, the schedule for required reading, and all handouts will be posted on that website.

Textbook: The textbook is Composing Programs by John DeNero. The book is available online

at www.composingprograms.com.

Course overview

The goal of this course is to introduce you to the principles of computation. That includes

teaching you to write a program, as well as how a computer interprets and runs a that program.

Writing a program well can be a difficult skill to master. You must understand the tools

available to you, and you must understand the principles of good design that allow those tools

to be used in manageable, understandable ways.

Our vehicle for building these skills will be programming in Python, which is a good introductory

language for a variety of reasons. First, it uses a reasonably simple syntax, reducing the need to

get bogged down in messy details. Second, it is very flexible, allowing me to show you several

different ways of writing programs. Finally, it’s a widely used language, meaning that knowing

it will be potentially quite useful to you after the course.

http://people.reed.edu/~agroce/math121/
http://www.composingprograms.com/

Given how much time we will spend programming in Python, you could be excused for thinking

this was simply a course in how to write Python programs. It is not. There are some areas of

programming (like graphics) that are very useful for practical applications, but which do not

require any new conceptual understanding. We will largely be ignoring those areas, though the

course should make it easy for you to learn those things on your own with some quick internet

searches. We will also be covering some topics which do little to aid in the writing of programs,

but which are important to the understanding of computation as a whole.

Coursework and grading

Reading: There will frequently be assigned reading, generally from the course textbook. You

should make sure to have this complete before the day it’s due, because I will assume you have

read it. This course is cumulative, meaning that later topics depend on the knowledge of earlier

topics. You really don’t want to get behind.

Homework: There will be a homework assignment roughly each week. A homework will

usually consist of a series of short (though still challenging) exercises. Don’t be afraid to come

to office hours if you’re having trouble (but make sure you at least try things for yourself some

first). You will also usually have the entire lab period on Thursdays to work on your homework,

with me and a teaching assistant available to help with problems. (In fact, I ask that you not

work on anything else during those lab hours unless your current homework is already

finished.) Homework will account for roughly a third of your grade.

Projects: During the course there will be three larger projects. These will be similar to the

homework except that they will involve larger blocks of code and give you some experience

with more involved programming tasks. They will also give you a little room to be creative and

decide for yourself exactly how you want your program to behave. These projects can take

considerable time, and you will be working on them at the same time you are continuing to do

the weekly homeworks, so it is important that you not put them off too long. Projects

contribute another third of your grade.

Tests: There will be two tests in total during the course, a midterm during the regular semester

and a final. These will be written tests, and they will cover everything being taught in the

course. They will be worth roughly a third of your grade.

Other policies

Submitting work: Work, both homeworks and projects, should be submitted in two ways.

First, you should upload an electronic version. (The first homework will explain how to do this.)

Second, you should print out what you’ve written and turn it in in class. The graders and I will

use the written version to write comments, point to errors, etc., and the electronic version to

run and test.

Clarity in programming: When you write programs for homework or projects, you are writing

code that needs to be understood by others (me and the graders). That means writing code in

understandable ways, and documenting that code well. We will talk in class about how to do

this, and your grade will depend on how well it has been done. It is not enough for the program

to do the correct thing.

Attendance: I trust you to make decisions regarding attendance for yourself. I think you

should attend every class because I think that is important to learning the course material, but

it is that learning of the material on which you will be judged, not the attendance directly. I

will, however, assume everyone is in class, and if you miss class you should make sure to talk to

someone else in the class to find out if you missed any announcements, schedule changes, etc.

If you miss a test you will receive no credit unless your absence is excused. Some excuses (such

as illness) will require documentation (such as a doctor’s note). I expect that if you will be

missing class for an excusable but predictable reason (say, a religious holiday) that you inform

me before the absence. I will not excuse absences after the fact for reasons that were known

about ahead of time.

Academic integrity: Unless otherwise stated, all work you turn in in this class should be yours

and yours alone. I take this very seriously and will not hesitate to report violations of this

principle. You are allowed to discuss homework with each other and even help a classmate find

a bug in their code. You are not allowed to share code or work on each other’s code. If you

have any question about whether some level of cooperation is acceptable, ask me.

Advice

Don’t procrastinate! It is very hard to predict how much time a given program will take to

write, even a very simple one. Sometimes what seems easy will turn out to be hard, and what

seems hard will turn out to be easy. Often a program feels 99% done, with only a couple little

things remaining, and that final 1% ends up taking as long as the first 99% took. You might find

that you don’t understand something you thought you did and need to ask questions in lab or

office hours. Leave extra time. Most of the time you won’t need it, but sometimes you will.

Don’t get frustrated! Programming and computer science in general require thinking in ways

that will be new to many of you. That’s part of why this is such a valuable class to take and why

it can be so much fun, but it can also make it very difficult, especially at first. Sometimes things

will click easily and sometimes they won’t. Don’t expect everything to work out perfectly the

first time. It is entirely normal to run into obstacles along the way.

Have fun! Learning to work with computers can be a fantastic experience. It changes

mysterious objects you just take for granted into something you can understand. Whatever

you want to do outside computer science, whether it’s biology or art or economics,

programming can help make it happen. And most importantly, it’s just extremely interesting

and intellectually rewarding. Don’t get so lost in the details the work that you don’t enjoy the

experience.

