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ABSTRACT 

The main purpose of this paper is to show that any embedding of K7 in 
three-dimensional euclidean space contains a knotted cycle. By a similar 
but simpler argument, it is also shown that any embedding of K, contains 
a pair of disjoint cycles which are homologically linked. 

1. INTRODUCTION 

By a sparial embedding of a graph r we mean an embedding of r in 
euclidean 3-space, which is tame, i.e., has a polygonal representative. 
Let K,, denote the complete graph on n vertices. We shall prove the 
following. 

Theorem 1. Every spatial embedding of K6 contains a nontrivial link. 

Theorem 2. Every spatial embedding of K, contains a nontrivial knot. 

The proofs actually yield more specific information. Precisely, every 
spatial embedding of K6 contains a pair of cycles with odd linking number, 
and every spatial embedding of K, contains a Hamiltonian cycle with 
nonzero arf invariant. 

The basic philosophy underlying both proofs is the same, although 
Theorem 1 is considerably easier than Theorem 2. The following is an 
outline of the method. 

Given a spatial embedding of a graph r, we may suppose, after a 
(small) ambient isotopy (i.e., a continuous family of homeomorphisms 
h,, 0 s t =s 1, of 3-space onto itself, such that ho is the identity), that 
the projection of r onto the horizontal plane is regular; i.e., its only 
singularities are double points in the interiors of edges of r. These may 
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be indicated diagrammatically in the usual way as overlundercrossings. 
(See Fig. 1.)  Now it is a standard fact in knot theory, not hard to prove, 
that any two spatial embeddings of r arc equivalent under the equivalence 
relation generated by moves of the form: ambient isotopy to regular 
projection position followed by a change of a crossing from over to under 
(a crossing change). The proofs of Theorems 1 and 2 proceed by considering 
some (ambient isotopy) invariant of a spatial embedding of the relevant 
graph r, with the property that any embedding for which this invariant 
is nontrivial must necessarily satisfy the conclusion of the theorem, and 
then showing that ( I )  the invariant is unaltered by a crossing change, 
and (2) there exists an embedding for which the invariant is nontrivial. 

Theorem 2 was proved in this way by Conway many years ago, but 
never published. Gordon became aware of the problem through some 
lectures by S. Armentrout at Princeton in April 1977, and on relating it 
to Conway, had an outline of the proof described to him. Expressing 
the details in terms of the arf invariant (as in the present paper), he 
subsequently reported on Conway’s result in a lecture at the NSF-CBMS 
Conference on 3-Manifolds at VPISU, Blacksburg, in October 1977. 

Theorem 1 was suggested by Ronnie Brown; it readily yields to the 
same general method. We are informed by Frank Quinn that this has 
also been done by Masayuki Yamasaki. 

2. PROOFS 

Knots, links, graphs, etc., will usually be unoriented. Let A l ,  A2 be 
disjoint graphs in euclidean 3-space, such that the projection of A ,  U A2 
is regular. Define w(Al, A 2 )  E Z2 to be the number of times (mod 2) that 
A l  crosses over A,  in the projection. (For us, Ai will actually always be 
an arc or a circle.) 

If A ,  and A2 are both circles, then @ ( A , ,  A,)  is equal to the mod 2 
linking number of A ,  and A 2 ,  Ik(Al,  A 2 ) .  

FIGURE 1. 
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Proof of Theorem 1. Given a spatial embedding of K 6 ,  define A E Zz 
by 

A = 2 Ik(C,, C,) ,  

the summation being over all 10 = a(:) unordered pairs { C , ,  C , }  of disjoint 
cycles in K , .  

Consider what happens to A under a crossing change. If the crossing 
is of an edge with itself, or of adjacent edges, then for any pair of disjoint 
cycles { C , ,  Cz}, w ( C , ,  C,)  is unchanged, and hence A is unchanged. 

If the crossing is of nonadjacent edges, A , ,  A , ,  say, then w ( C , ,  C , )  
is unchanged unless (possibly after renumbering) Ai C Ci, i = 1,2, in 
which case w ( C , ,  C,) changes by 1 .  But given nonadjacent edges A , ,  
A , ,  there are exactly two such pairs { C , ,  C,} corresponding to the choice 
of which of the two remaining vertices to take with A ,  to form C , .  Hence 
again A is unchanged. 

To complete the proof, it suffices to show that A = I for some specific 
spatial embedding of K , .  But it is easy to check that for the embedding 
illustrated in Fig. 1, each pair of disjoint cycles forms a trivial link except 
one, which forms two unknotted circles linked once; hence A = 1. I 

Our proof of Theorem 2 uses the arfinvariant a ( K )  E Z, of a knot 
K .  This is discussed in the Appendix. For our present purposes, we only 
need to know how a ( K )  is affected by a crossing change. To this end, 
let the knots K , ,  K - ,  and the 2-component link L ,  with components 
L , ,  L,, be related in that they have regular projections which are identical 
outside a small neighborhood where they differ as indicated in Fig. 2. 
We then have 

Lemma 1. 
a ( K + )  = a ( K .  ) + Ik(L1, Zq).  

This is proved in the Appendix. 

Proof of Theorem 2.  Given a spatial embedding of K , ,  define u E Z2 
by 

(+ = c 4 C ) ,  

K- L 

FIGURE 2. 
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the summation being over all 360 = :6! Hamiltonian cycles C in K , .  
We shall show, using Lemma 1,  that u is invariant under crossing changes. 

The crossings are of three kinds: of an edge with itself, of adjacent 
edges, and of distinct nonadjacent edges. Note, however, that we need 
never consider crossings of an edge with itself, as a change in such a 
crossing can always be replaced by five changes of crossings of distinct 
edges. (The process is indicated schematically in Fig. 3. )  

Also, if we want to change a crossing of adjacent edges A ,  B ,  we may 
first contract A ,  say, by moving its vertices along itself toward the crossing 
point in question, dragging the rest of the graph along, and in the same 
way move the vertex of B which does not belong to A toward the crossing 
point. Thus we may assume that the projection of K7 near our crossing 
point is as  shown in Fig. 4(a), possibly with the crossing reversed. 

Similarly, for a change of crossing of two distinct nonadjacent edges 
A ,  B,  by contracting each edge toward the crossing point we may assume 
that the projection near this crossing point is exactly as in Fig. 5(a) 
(possibly with the crossing reversed). 

Hence it will suffice to show that u is invariant under these two kinds 
of special crossing changes. (This geometrical simplification is not strictly 
necessary, but it does shorten somewhat the counting argument which 
follows .) 

___._.._..._._ ~ -..._ ~ _ _ _ -  

FIGURE 3. 
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FIGURE 4. 

Consider, then, a special change of crossing of (distinct) edges A ,  B. 
Certainly a ( C )  is unchanged if C does not contain A and B, so let C be 
a Hamiltonian cycle which does. Let E(C) E Z2 denote the change in 
a ( C )  induced by the crossing change. By Lemma 1, E(C) = Ik(L,, L 2 ) ,  
where L = L,  U L2 is the link determined by C and the crossing change 
as described in that lemma. We consider the two kinds of special crossing 
changes separately. 

I. Suppose A and B are adjacent. Then L = L ,  U L2 is as indicated in 
Fig. 4(b). Note that L,  is independent of C. We have 

the summation being over all edges E C C ,  E # A ,  B. The change in 
cr is Z E(C),  summed over all Hamiltonian cycles C containing A and 
B. 

Now for any edge E in K , ,  E # A, B, the number of Hamiltonian 
cycles containing A,  B, and E is 

0 ,  

3! ,  

2 x 3!, otherwise. 

if E, A ,  B have a common vertex; 

if E is adjacent to A or B (but not both); 

Hence for any edge E # A ,  B in K , ,  w ( L , ,  E )  appears an even number 
of times in C E(C).  Therefore C E(C) = 0, showing that cr is unchanged. 

11. Let A ,  B be distinct nonadjacent edges. Here the link L = L ,  U L,  
is as indicated in Fig. 5(b). We have 

E(C) = M L , ,  L2) = 2 w ( E l ,  E 2 ) ,  

FIGURE 5. 
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summed over all pairs of edges { E l ,  E 2 }  of C such that El C L , ,  i = 1 ,  
2. 

But for any pair {El, E,}  of edges of K,, neither of which is A or B ,  
it is easy to verify that if I@,, E 2 )  denotes the number of Hamiltonian 
cycles C containing A and B such that (possibly after renumbering) E, 
C L , ,  i = 1 ,  2, then v ( E , ,  E z )  is always even. In fact, if we label the 
vertices of K ,  as 1 ,  2, ..., 7, and use (ij) to denote the edge with vertices 
i , j ,  then we may take A = (12), B = (34), and assume that the vertices 
2, 3 and 1 ,  4 are paired in forming L (see Fig. 6). Then, up to symmetry, 
the only cases in which v ( E , ,  E2)  is nonzero are with E l ,  Ez equal to 

the corresponding Hamiltonian cycles being 

(i) (1234567), ( 

(ii) (1234567), ( 

(iii) (1273456), ( 

(iv) (1273456), ( 

234576); 

234657), (1 234756), ( I  234765); 

276345) ; 

273465). 

It follows that in C E(C), summed over all Hamiltonian cycles C containing 
A and B ,  each term w ( E , ,  El )  appears an even number of times. Hence 
again u is unchanged. 

Finally, it is a routine exercise to verify that the embedding of K7 
shown in Fig. 7 has all Hamiltonian cycles unknotted except one, which 
is a trefoil knot. Since the arf invariant of the trefoil is I ,  this embedding 
has u = 1, and the proof is complete. I 

Appendix 

In this appendix we briefly describe two approaches to the arf invariant 
of a knot. 

1 4 

FIGURE 6. 
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FIGURE 7 

I. Let K be a knot in euclidean 3-space E3,  and let F be an orientable 
surface spanning K .  Since F is two sided, there corresponds to each 1- 
cycle C on F a 1-cycle c in E3\F obtained by pushing C off F in some 
fixed normal direction. Define 

This is a quadratic function whose associated bilinear form p(x, y) = 
cp(x + y) + cp(x) + cp(y)  is readily identified with the mod 2 homology 
intersection form on F.  Since the latter is nonsingular, the arfinvariant 
of cp is defined, and is given by 

where e l , f , ,  ..., e f l , f f l  is any symplectic basis for p [ I ] .  It can be shown 
that a(cp) is independent of the particular choice of F ,  enabling one to 
define the arfinvariant o f K  by a ( K )  = a ( p )  [71. 

To prove Lemma 1, let F ,  be an orientable spanning surface for K ,  . 
It is easy to see that near the indicated crossing point, we may assume 
that F ,  is as illustrated in Fig. 8. There are then defined corresponding 
orientable spanning surfaces F -  , F,, for K -  , L,  respectively, as illustrated, 
such that F ,  is obtained by joining the boundary components of Fo by 
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b b 

Lz 

&???A L1 

FO 

FIGURE 8. 

a band b,. By adding a tube to it if necessary, we may assume that F, 
is connected. 

Let e l ,  f,, ..., en- ,, f n - ,  be a symplectic basis for H,(F,;  Z,). This 
can be extended to a symplectic basis for H , ( F , ;  Z,) by adjoining 
e n ,  f', where en is represented by L I ,  say, and f X  is represented by 
the union of the core of b+ with a suitable path in Fo joining the ends 
of this core. (See Fig. 8.) Note that since the bands 6, differ by a single 
twist, cp(f,:) - c p ( f , - )  = 1. Hence 

- a V - 1  = cp(e,)[cp(f,+) - cp(f;)I 

= d e n )  

= lk(L,, L , )  

= lk(Z,, L,) 

(since L,  and L2 are homologous, by F,, in the complement of 2,) 

(since L ,  and 2,  are homologous in the complement of L 2 ) .  

II. Let Vdz) = Z;=, ai(K)z' denote the Conway polynomial of the oriented 
knot or link K [2, 31. Define a ( K )  E Z, to be the mod 2 reduction of 
a2(K) .  If K is a knot, then it turns out that a ( K )  coincides with the arf 
invariant of K as  defined previously. {This follows easily (see [3]) from 
the fact that, using the first definition of cr(K), a ( K )  = 0 or I according 
as A( - 1) = ? I or ? 3 (mod 8), where A is the Alexander polynomial 
of K [4, 61.) 

Referring to Fig. 2, recall [2, 31 that, with suitable string orientations, 
we have the identity 
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(We no longer insist that K ,  have only one component.) In particular, 

It follows readily from (i) by an inductive argument that a , (K)  = I or 
0 according as  K has one or more than one component, and in the same 
way (ii) then implies that a , ( K )  is equal to the (integral) linking number 
of the components of K if K has two components, and 0 otherwise. 
Lemma I now follows immediately from (iii). 

Finally, we remark that a four-dimensional proof of Lemma 1 is given 
in [S]. 
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