A First Course in Modular Forms:
Corrections to the Third Printing

March 21, 2016

(The corrections here are also corrections to the earlier printings, but the
third printing’s pagination has changed a bit. In case of problems locating a
correction here in an earlier printing, please email jerry@reed.edu.)

Chapter 1

o Pages 21-22: The wording of exercise 1.2.4 can be improved a bit because
the condition d = 0 is impossible in I'y(4).

Chapter 2

e Page 47, lines (—2)—(—1): Change “group” to “subset of SLy(R)” on
line (—2), and change “group” to “subgroup” on line (—1).

Page 55, line 2: Change “[25]” to “y=[2}]".

Page 55, line (—6): Change “proving (1)” to “proving (c)”.

Page 56, exercise 2.3.2: Change “If” to “If the nontrivial transformation”.
Page 56, exercise 2.3.5(b): Change “third” to “fourth”.

Page 61, line 14: Change “width” to “period”.

Chapter 3

Page 65, line (-2): Change “Y'\h(€)” to “Y'\f(E).
Page 66, line 20: Change “equal genus” to “equal genus g > 17.
Page 69, lines 4-5 (and the relevant bibliography item): Helena Verrill’s
fundamental domain drawer is at
http://www.math.lsu.edu/ verrill/fundomain/
on April 8, 2008.
Page 70, line (—14): Change “of order 4” to “with j' # j7.
Page 70, line (—6): Change “—6,...,7” to “—6,...,6,00”.
Page 70, line (—5): Change “of order 3 or 6” to “with j’ # j”.
Page 70, line (—1): Change “with with” to “with”.



Page 72: The quantity denoted h in lines 4-7 should be given a different
name such as A, as it is not necessarily the h or the A’ in the discussion on
page 74. The sentence “Thus f has period h.” on lines 4-5 is correct, but
h need not be the smallest period of f.

Page 74, line (—9): Change “qn = e2™/"'7 to “g = 2mi7/h'»

Page 74, line (—8): Delete “qr = e2™7/h" and”.

Pages 74-75: The discussion in the “Defining. ..” paragraph on page 74 has
an error: the period is 2h in the third case independently of k, even though
f(r+h) = f(7) for k even. That is, in the first two cases we have h/ = 2h =
2h but in the third case we have h’ = h = 2h. On page 75, remove “and k
is 0odd” from (3.3), and change the text immediately following, from “This
can be half-integral in the exceptional case, when 7(s) or s itself is called
an irreqular cusp of I'. For example, when k is odd 1/2 is an irregular
cusp...” to “This is half-integral if (o 'I'a)s = (— [§ #]) (when 7(s) or
s itself is called an irregular cusp of I') and k is odd. For example, 1/2 is
an irregular cusp...”.

Page 81, paragaph beginning “On the other hand...”: Replace the discus-
sion leading up to (3.7) with “On the other hand, if U; contains a cusp s;
then ¢; takes s; to oo and the function (f[a]s,)(2) takes the form g;(gn)
where h is the width of s and ¢, = €?™**/"; here g; is meromorphic in gy
at 0 if the cusp is regular and g; is meromorphic in q,ll/ 2 = emiz/h gt () if
the cusp is irregular, but we think of g; as a series in powers of ¢ (half-
integral powers in the irregular case) so that the order is the index of the
leading coefficient. The relevant local differential is now”.

Page 81, line (—7): Change “R%/2(H)” to “N®*/2(H)”.

Page 90: Change “c3;” to “e3” on the first line of the three-line display.
Page 95, line 4: Change “v” to “v;”.

Page 95, line 15: Change “y =" to v = detm-".

Section 3.7: A more transparent approach comes from the moduli space
point of view, identifying Yo(N) and So(N) as in Theorem 1.5.1. For
N =1, elliptic points of Yo(N) correspond to elliptic curves C/A, with
automorphisms other than multiplication by +1. Since only two imaginary
quadratic orders have more than two units, and they are both PID’s, there
are two elliptic points: one of order 2 corresponding to A, = iZ ® Z, and
one of order 3 corresponding to A, = usZ ®7Z. For IH(N), reason likewise.
To find elliptic points of order 3, for example, look at the order N cyclic
subgroups of the lattice usNZ @ NZ, and count how many of them are
invariant under multiplication by ps. These are precisely the subgroups
generated by mug + 1 where m? —m +1 =0 (mod N). Thus the number
of elliptic points of order 3 is the number of solutions of the congruence
m?=m+1=0 (mod N).

Page 103, line 9: Change “yg = /¢! (mod N)” to “yo = ¢’c™! (mod N/d)”.
A procedure to list the cusps of I'h(V) is as follows: For each positive di-
visor of N choose some nonnegative integer ¢ such that ged(c, N) is the
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given divisor (e.g., take ¢ = 0 if the divisor is N and otherwise take ¢ to
be the divisor), then for each class in (Z/ ged(e, N/ ged(c, N))Z)* choose
a representative a coprime to ¢ and take a matrix [‘Z Z] € SLs(Z). Note
that (Z/Z)* is not empty but rather consists of one class, all of Z. Espe-
cially, if ged(c, N/ ged(e, N)) = 1 then the only corresponding cusp is [1 9]
(though for ¢ = 1 the representative [{ ~§] is preferable to [1 {]), and thus
a squarefree level N = py - - - p; has 2% cusps. Similarly, for N = 4 there are

three cusps, [{ 0], [29], and [§ 9], and for N = 9 there are four cusps,

[Y 7o) [59], [35), and [§9].

Page 106, fifth line of section 3.9: Change “X;(N)” to “X(1)”.

Page 106, after the displayed formula for d(I1(N)): Change “So —1I ¢
Io(N) while —I € SLy(Z).” to “So —I ¢ I'(N) but —I € Iy(N).”

Chapter 4

Page 123, line 9: Change “a,,—1(k)” to “a,(k)”.

Page 123, exercise 4.4.1(c): Change “Re(s) > 1”7 to “Re(s) > 0.

Page 127, line 13: Change “¢’ = (e + ¢'b,)d, (mod u)” to “¢’ = (e +
c'by)dy — q (mod u), where ¢ = (d' —dd,)/v".

Page 131: On the second line of the first two-line display the summand
should begin “mu‘]i\?m” rather than “u‘li\?m”. On the third line of the three-
line display a right parenthesis is missing from “(1 —§(¢,))” and the sum-
mand has the same error.

Page 133: Add an Exercise 4.6.4: “Use results from Chapter 3 to show
that S3(1p(4)) = 0 and that dim(Ms(Io(4))) = 2. This section shows
that E2*'% and E3*'* form a basis of My (I(4)); the function 6(r,4)
from the beginning of Section 1.2 lies in M2 (I(4)) as well. Show that
0(r,4) is a scalar multiple of Ey""*. Show that Ey*'"* — 3E;01% is a
scalar multiple of the function

f0) =3 oi(m)”

n>1

odd
(which is not a cusp form despite vanishing at infinity). Thus 6(r,4) and
f(7) form a basis of My (I(4)).”
Page 136, line 11: Change “negated” to “preserved”.
Page 136, line 12: Change “¢ > 0” to “t < 0.
Page 136, line 13: Change “ftozfoo” to “f, 37
Page 137, line 9: Change “(n)” to “(k)”.
Page 139: Right parenthesis missing from “(1 —d(¢,))” on the second line
of the second two-line display.
Page 140, line 8: Change “—c,” to “IN —¢,” in the first superscript. Make
the same change on page 142 in exercise 4.8.6.
Page 140, line (—1): Change the first {-superscript to “d + ev”.



Page 146, exercise 4.9.2: In part (a), change the condition defining S,, to
“In| = m”, omit the “Note that...” sentence, and change “I(2m + 1)!=1”
to “(2m+1)!. In part (c), change “I(2m +1)""1" to “(2m+1)"" and take
the first sum over n € Z! such that |n| > M.

Page 155, line 5: Change “g(@)/v” to “p(—1)g(@)/v”.

Page 155, line 11: Change “(—1)*” to “y(—1)".

Page 155, line 19: Remove “p(—1)”.

Page 157, line 14: The two-line display should end “ - = §%(it, N)”.
Page 162, exercise 4.11.5(c): The definition of of"*(m) should sum over
divisors of m.

Chapter 5

Page 174, diagram (5.8): Change “D” to “Div” four times.

Page 186, line 4: Change “3; = det(B8)B~1" to “B; = det(ﬁj)ﬁfl”.

Page 192, line 8: Delete “mq, 4, =".

Page 202, third line of the three-line display in the middle of the page:
Change ccp17k72s77 to upk7172s77'

Page 204, second line of section 5.10: Change “n®” to “n
Page 204, line (—3): Change “idempotent” to “an involution”.

Page 205, line 4: Delete “under the Hecke algebra”.

Page 206, line 3: Change “idempotent” to “an involution”.

Section 5.11: The calculation of orthogonality is formally correct, but the
absolute convergence of the double integral is not supported correctly by
the text.

Page 209, line 1: Change f(a(7")) to (fla]r) (7).

Page 209, lines 2-3: Delete “if Re(k + 2s) > 07.

—S8”

Chapter 6

Page 212, lines (—4) and (—5): Change “V;5” to “V;” and change “V51”
to “Va”.

Page 214, line 12 (third display): Change “f € C(X)” to “f € C(X)*”.
Page 215, line (—3): Change “homomorphic” to “homomorphism”.

Page 220, line (—5): Change “4” to “0”.

Page 221, line (—1): Change “[ v to “f"/”'

Page 228: In diagram (6.11), change “[yy;]2” to [a™lyy;]2” and also
change the last “X” to “Y”; in the following display, change “[vy,;]2”
to [ty )27

Page 232, line (—2): Change “R(f(x),g(x),z)” to “R(f(x),g(x);x)”.
Page 233, line (—3): Change “characteristic” to “minimal”.

Page 235, paragraph starting “Again suppose”: Also A and k are assumed
to be structurally compatible as needed.

Page 239, second display: Change “g” to “g;” on the right side of the
equality.

Chapter 7



Page 268, line 3: Change “€” to “C” twice.

Page 273: Change “k[z]” to “k(z)” in (7.6).

Page 275: Change Exercise 7.3.4(b) to “Show that if vp(x) is even and
nonzero, or if vp(x) = 0 and vp(y) # 0, then vp(F(z)) is even for any
rational function F.”. These are the cases used in the text.

Page 277, line 9: Change “(f2 o [N]” to “(f2 o [N])”.

Page 283, lines 8-10: Replace the sentence beginning, “A complementary
argument. ..” with “For each 7 € (Z/NZ)?, the function fi” determines
two N-torsion points of F; unless 2v = 0, in which case it determines
one (Exercise 7.5.5(a)), and so we have found all N? points of E;[N]
(Exercise 7.5.5(b)).”

Page 286: Replace Exercise 7.5.5. The new exercise is, “(a) Show that for
each @ € (Z/NZ)?, the function 5 determines two N-torsion points of E;
unless 2v = 0, in which case it determines one. (b) Show that consequently,
regardless of whether N is odd or even, we have found all N? points
of E;[N].”

Page 290: In the second paragraph of Section 7.7, change “three” to “two”
and remove the references to K{, C(j, jn), and K. (It takes some work to
show that K{, is an intermediate field as claimed, and we do not need this
result.)

Page 291, line 14: Change “indeterminants” to “indeterminates”.

Page 291, line (—6): Change “either fy or jn” to “fo”.

Page 294, line (—9): Change “Ky, K|, and K;” to “Ky and K;”.

Chapter 8

Page 316, line (—15): Change “lie in k.” to “lie in k. For char(k) = 2,
assume that every element of k is a square.”.

Page 326, line 1: Change the initial value “a;(E) = 1”7 to “a1(F) = 2.
Furthermore, the normalized solution-counts that are denoted ape(F) on
page 325 should be given a different name, as the true ape (E) are indeed
defined as on page 361 by the same initial value and recurrence as the
Fourier coefficients aye(f) of a newform. For now the normalized solution-
counts are renamed tpe (E). Note that ¢,(E) = ap(E).

Page 333, line (—15): Change “Z” to “Z,)”.

Page 334, line 3: Change “kernel” to “kernel zero and”.

Page 335, line 12: Change “[N]” to “[p]” twice.

Page 336, line 3: Change “u%” to “ug”.

Page 342, line 20 (end of first complete paragraph): Change “J;” to “J(;)”.
Page 346, line 5: Change “I — IM” to “I — Ik[C]p”.

Page 351, lines 4-6 (clarification, not correction): The argument given is
necessary. The fact that the bottom arrow of the diagram is the zero map
does not immediately show that ker(¢) = E’[p|, because the domain of 1
is all of E.

Page 353, line (—8): Change “(7.18)” to “(7.18) (page 304)”.
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Page 361: The right idea is to define for any prime p the local counting
zeta-function of E, encoding the normalized solution-counts t,e (E) = p© +
1 — |E(Fye)l, as

Zy(X, E) = exp (i tpeiE)Xe> .

e=1

Taking logarithmic derivatives shows that in fact for X = p~* the local
zeta-function takes the form of an Euler factor,

Zy(p % E) = (1 — ap(E)p~* + 1g(p)p' )"

(The relation a,(E) = t,(E) is explained in the correction to page 326.)
The Hasse-Weil L-function of E is the product of these Euler factors,

L(s,BE) = [[(1 = ap(B)p~* + 1u(p)p' )"

p

By the methods of the proof of Theorem 5.9.2, the Dirichlet series form of
the L-function is

L(s,E) = an(E)n"*

where similarly to the Fourier coefficients of a newform, the a,,(E) satisfy

(E)
(E)=p

ape (E) = ap(E)ape-1(E) — 1p(p)paye—2(E), e>2,
(E) = a

Chapter 9

Page 367, second display: Also d # 0, 1.

Page 368, third display: No claim is made that the powers of uy are
independent over Z.

Page 368, line 16: Change “ramify in Q(uy).” to “ramify in Q(uy) (except
that 2 does not ramify if N =2 (mod 4), but then Q(un) = Q(un/2) and
N/2 is odd).”

Page 375, line 5: Change “1 4 {"Z};” to “1 +{"Z,".

Page 381, line 12: Change “of C” to “of the curve C' from Section 9.2”.
Page 383, middle of the page: Replace “For each n the field Q(E[¢"]) is a
Galois number field, giving a restriction map

Go — Gal(Q(E["])/Q), o= algpm)

and there is also an injection



Gal(Q(E[(")/Q) — Aut(E["]).”

with “Under the isomorphic identification of F with Pic’(E), multiplica-
tion by ¢* on E for any n € Z* becomes purely formal on Pic’(E), and
so it clearly commutes with the Gg-action on Pic’(E). Thus the actions
on F commute as well, and so the Galois action restricts to £"-torsion,

Go — Aut(E[()).”

Page 384, line (—10): Replace “Theorem 8.4.4” by “Proposition 8.4.4”.
Page 384: The second paragraph of the proof of Theorem 9.4.1 is correct
but it can be replaced by the following two paragraphs if desired.

“The relation a,(E) = 0}« + 0, as endomorphisms of Pic’(E) (Proposi-
tion 8.3.2) and the preservation of ¢"-torsion under reduction combine to
show that Frob, satisfies its asserted characteristic equation. Consider the
diagram

Bl —2 s pjen)

J |

Blem] =22 i),
Identifying elliptic curves with their degree-0 Picard groups as earlier, and
recalling from equations (8.14) and (8.15) that o), = 0, . and po, ' = o7
under the identification, we see that the diagram commutes. The same dia-
gram but instead with Frob, +p Frob;1 across the top row also commutes.
Since the vertical arrows are isomorphisms, a,(E) = Frob, + pFrob, !
on E[¢"], and since n is arbitrary, the equality extends to Tay(F). Multi-
ply the equality through by Frob, to get Frobi — ap(E)Frob, +p = 0.
The previous paragraph shows that the minimal polynomial of Frob, di-
vides 2% — a,(E)z + p but not yet that this is the characteristic poly-
nomial. (For example, the identity operator on a 2-dimensional vector
space satisfies any quadratic polynomial (z — 1)(z — a), not only its char-
acteristic polynomial (z — 1)2.) To finish establishing the characteristic
polynomial of Frob, for p t {N, we show that det pg ¢(Frob,) = p. Let
let p, : Gog — GL2(Z/¢"Z) be the nth entry of pgy for n € Z*. As in
Lemma 7.6.1, the Weil pairing shows that the action of ¢ € Gg on the
root of unity pen is given by the determinant, but by definition the action
is also to raise pg» to the nth entry of the cyclotomic character x,(o),

(G, = H?:t pn(o) _ H%’"(U)~
That is, det py,(0) = xen(0) in (Z/"Z)* for all n, so det pg (o) = xe(o)
in Zj. In particular (9.13) gives det pg ¢(Froby,) = p, as desired.”
Page 385: Exercise 9.4.2 requires many changes.



The exercise applies to the ¢y (E) rather than to the ape(E), and so this
change should be made throughout.

Change the initial value from ¢;(E) =1 to t1(E) = 2.

At the end of the text leading up to part (a), delete “except when p = 2
and 2 | N”.

With the proof of Theorem 9.4.1 modified, change A€ to Frobﬁ throughout
parts (a) and (b).

At the end of part (a), add the sentence, “Note that the equality holds for
e =0 as well.”

In part (b), change “Show that” to “Show that for e > 2”.

Change part (c) to “(c) For p | N, (8.11) says that we may take E :
(y — miz)(y — moz) = 2* with my + mo,mims € F,. Show that the
formula,

t— ((t — ml)(t — mg),t(t — ml)(t — mg))

describes a map from P (F,) to E(F,). By considering the map (z,y) — y/z
from E(F,) — {(0,0)} to P'(F,) also, show that the displayed map injects
except for possibly hitting (0,0) more than once (when m, mo are distinct
and lie in F;) and that the map surjects except for possibly missing (0, 0)
(when mj, mg do not lie in F,), and so the map bijects when my = mg lies
in .

The reduction E is multiplicative if m; # mo. Show that if the reduction
is split, i.e., m1,mg € F,, then ¢y (E) = 1 for all e > 1. Show that if the
reduction is nonsplit, i.e., my, mo ¢ F,, then ¢y (E) = (—1)¢ for all e > 1.
Show that the recurrence is satisfied in both cases.

The reduction is additive if m; = msy. Show that the common value m lies
in F, (the argument will be different for p = 2). Show that ¢,.(E) = 0 for
all e > 1, and show that the recurrence is satisfied in this case as well.”

Add a new part to the exercise: “(d) Again assume that pt N. Show that

(1—ap(E)r +px®) ™' = (1 - \a) 11— x) ' = Z ( Z )xfx\éi) xc.

e=0 \c+d=e

Explain why it follows that whereas the normalized prime-power solution-
counts of the elliptic curve are tpe (E) = A{ + A3, the corresponding prime-
power Dirichlet coefficients of L(s, E) are ape(E) =Y, ;. A{A3.”

Page 388, line 4: Replace “The field extension Q(Pic”(X1(N))[¢"])/Q is
Galois for each n € ZT” with “The Galois action commutes with the purely
formal action of multiplication by ¢" for any n € Z*”.

Page 390: The proof of Lemma 9.5.2 can be clarified as follows.

“Multiplication by ¢™ is surjective on IrJ1 (V). Indeed, it is surjective on

the complex torus J; (), and the commutative Hecke algebra Ty contains
both Iy and (", so that {"I;J1(N) = I"J1(N) = I;J1(N).
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To show the first statement of the lemma, take any y € A;[¢"]. Then y =
x+1;J1(N) for some x € J1(N) such that £"x € I;J;(N). Thus "z = ("2’
for some ' € I;J1(N) by the previous paragraph. The difference z — 2’
lies in J1 (N)[¢"] = Pic®(X1(N))[¢"] and maps to y as desired.

The kernel is Pic® (X1 (N))[¢"] N I;J1(N) = (IJ1(N))[€"]. We claim that
the containment

(I¢Pic (X1 (N)))[E"] € (L2 (N))[€"],

is in fact equality. Granting the equality, the second statement of the
lemma follows quickly: the kernel is now (I;Pic’(X;(N)))[¢"]. That is,
the kernel is Pic®(X:(N))[£"] N I;Pic’(X;(N)), which is stable under the
Galois action: the first intersectand is stable because the Galois action
on Pic’(X(N)) preserves £"-torsion, and the second is stable because the
Galois and Hecke actions on Pic’(X;(N)) commute.

To prove that the containment is equality, note that it is a containment
of torsion of Ij-images, while if instead we were considering Iy-images
of torsion then there would be nothing to show, i.e., Pic’(X;(N))[("] =
Ji(N)[¢"] and thus I;(Pic’(X1(N))[€"]) = I;(J1(N)[¢"]). So the argu-
ment will relate the given containment of torsion of Iy-images to an
equality of Iy-images of torsion, To do so, let So = Sa(I1(INV)) and
H, = Hl(Xl(N)@7Z) - 82/\ Thus Jl(N) = Sé\/Hl and

Ile(N) = (IfSQA +H1)/H1 = IfSé\/(Hl ﬂIfSé\)

Now suppose that y € (I;J1(V))[¢"]. Then y = x + Hy where by the
previous display we may take

r€1;S) and ("x € HiNISS.

Proposition 6.2.4 shows that Hy N I;S5 contains IyH; as a subgroup of
some finite index M. Consequently Hy N I;S3 C IfM_lHl. From the
previous display and the containment, "z € I;M~'H;, and so

zelfM ¢ "H;.

That is, z = Txg where T' € Iy and z¢ € 8§ and M{"z, € Hy, and so
y = T(xo+ Hi) where o + Hy € J1(N) and M{"(zo + Hy) = 0. In sum,
our y from (I;J1(N))[€"] lies in I;(J;(IN)[M£"]), and we are set up to use
the equality of Iy-images of torsion,

y € I;(Ju(N)[M"]) = I;(Pic” (X1 (N))[M€"]) C I;Pic” (X1 (N)).

And since "y = 0 in fact y € (I;Pic”(X1(N)))[¢"]. Thus the opposite con-
tainment is proved, establishing the desired equality. As explained above,
the proof of the lemma is complete.”
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Page 391: Replace the two lines before Lemma 9.5.3 with “Since the Tate
module Tay(Ay) = Z2? is a module over Oy, the tensor product

Vi(Af) = Tay(Af) @ Q = Q7*

is a module over Oy ® Q = Ky. Also, it is a module over Q,, with the
two actions commuting and with the restrictions of the two actions to Q
agreeing. Thus Vy(Ay) is a module over Ky ®g Qp.”

Replace the proof of the lemma with “Since Tay(Ay) is the inverse limit
of the torsion groups A;[¢"], we need to describe A¢[¢"] in a fashion that
will help establish the freeness.

As above, let S; = Sa(I1(NV)) and let H; = Hy(X1(N)¢,Z) C S5. Con-
sider the quotients S = S5 /1;S5 and Hy = (Hy + 1;85)/1;S4, both
Oy-modules. Compute that

Ap = J1(N)/I;J1(N) = (83 /H:) / (IS5 + H1)/Hh)
=~ 85 /(1§85 + Hh)
= (82/1585) | ((Hy + 158)/1;S5) = 83 /Hy.

Thus Ay[¢"] = ¢~"H,/H; for any n € Z*. The Oj-linear isomorphisms
¢~"H,/H; — Hy/¢"H; induced by multiplication by " on {~"H; as-
semble to give an isomorphism of Of ® Zg,-modules,

Tag(As) = Im{ Ay [0"]} = Um{¢""Hy/Hy} = lim{H, /("H,} = Hy ® Zy,
where the transition maps in the last inverse limit are the natural projec-
tion maps.

The fact that Ay is a complex torus of dimension d and the calculation
a moment ago that Ay = S5 /H, combine to show that the O¢-module
Hi = Hy/(Hy N I;S3) has Z-rank 2d. Since Ky is a field, H; ® Q is a
free Ky-module whose Q-rank is 2d and whose Ky-rank is therefore 2.
Consequently, H; ® Q; = H; ® Q ®g Qy is free of rank 2 over Ky ®g Q.
So finally,

Vi(Ap) =Tay(A;) ® Q=2 H1 ® Z © Q2 H; ® Qg

is an isomorphism of K; ®g Q-modules, and the proof is complete.”
Page 396, line (—11): Change “A € Ok,” to “A C Ok, ”.

Page 397, line 11: For the Fermat equation, it is understood that ¢ is an
odd prime.

Hints and Answers to the Exercises

Page 410, hint to Exercise 5.3.1: Replace “Mpe U [} g] M,

p
-1 0 HE

Ui [0 p] Mpe— [1]7

Page 414, hint to Exercise 7.7.1: Remove “jy = j(E;/{(Q.)) and since”,

remove “j% = j(E;/(Q7)) and”, and change “In both cases the” to “The”.

e—2” with “Mye U



