Algebraic Deformations of Rational Functions

Kyle Ormsby
MIT
February 21, 2013
Outline:

Algebraic puzzle

Linking rational functions w/polynomials
Outline:

Algebraic puzzle → Topological avatar

Linking rational functions w/polynomials → Wrapping spheres around spheres
Outline:

- Algebraic puzzle
 - Linking rational functions w/polynomials
- Quadratic solution
 - Bilinear forms up to isometry
- Topological avatar
 - Wrapping spheres around spheres
Outline:

Algebraic puzzle

Topological avatar

Linking rational functions w/polynomials

Wrapping spheres around spheres

Quadratic solution

Motivic homotopy

Bilinear forms up to isometry

Where the wild things are
Outline:

- Algebraic puzzle
- Topological avatar

Linking rational functions w/polynomials

- Quadratic solution
- Motivic homotopy

Wrapping spheres around spheres

Bilinear form up to isometry

Where the wild things are.
A puzzle:

Rational functions

\[f = \frac{p}{q} = \frac{x^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_{n-1}x^{n-1} + \cdots + b_0}, \]

\[g = \frac{p'}{q'} = \frac{x^n + a'_{n-1}x^{n-1} + \cdots + a'_0}{b'_{n-1}x^{n-1} + \cdots + b'_0}. \]
A puzzle:

Rational functions

\[f = \frac{p}{q} = \frac{X^n + a_{n-1}X^{n-1} + \cdots + a_0}{b_{n-1}X^{n-1} + \cdots + b_0} \]

\[g = \frac{p'}{q'} = \frac{X^n + a_{n-1}'X^{n-1} + \cdots + a_0'}{b_{n-1}'X^{n-1} + \cdots + b_0'} \]

E.g.

\[f = \frac{X^4 - X^2}{-X^2 + 4} \]

\[g = \frac{X^4 + X^2}{-X^2 - 4} \]
A puzzle:

Rational functions

\[f = \frac{\varphi}{\varrho} = \frac{x^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_{n-1}x^{n-1} + \cdots + b_0}, \]

\[g = \frac{\varphi'}{\varrho'} = \frac{x^n + a'_{n-1}x^{n-1} + \cdots + a'_0}{b'_{n-1}x^{n-1} + \cdots + b'_0}. \]

When is there a new rational function

\[H(X,T) = \frac{P}{Q} = \frac{X^n + A_{n-1}(T)x^{n-1} + \cdots + A_0(T)}{B_{n-1}(T)x^{n-1} + \cdots + B_0(T)}, \]

such that

\[H(X,0) = f, \quad H(X,1) = g? \]

[The \(A_i(T) \) and \(B_i(T) \) are polynomials.]
Refining the puzzle:

Assume all coefficients are real numbers. For a rational function $H(X,T)$ and complex number t, let $H_t = H(X,t) = \frac{P_t}{Q_t}$.
Refining the puzzle:

Assume all coefficients are real numbers.

For a rational function $H(X,T)$ and complex number t, let $H_t = H(X,t) = \frac{p_t}{q_t}$.

We only consider $H(X,T)$ such that p_t and q_t have no common roots for all t.
Refining the puzzle:

Assume all coefficients are real numbers.

For a rational function $H(X,T)$ and complex number t, let $H_t = H(X,t) = \frac{P_t}{Q_t}$.

We only consider $H(X,T)$ such that P_t and Q_t have no common roots for all t.

If $H_0 = f$ and $H_t = g$, call H an algebraic deformation of f to g and write $H : f \sim g$.
Example:

\[
\frac{x^4 - x^2}{-x^2 + 4} \quad \frac{x^4 + x^2}{-x^2 - 4}
\]

\[
H(x, T) = \frac{x^4 + (2T - 1)x^2 - 48T^2 + 48T}{-x^2 - 8T + 4}
\]

http://math.mit.edu/~ormsby/alg_def.gif
Non-example:

\[H(X,T) = \frac{X^2}{X + 2T - 1} \]

We have

\[H(X,0) = \frac{X^2}{X - 1} \]
\[H(X,1) = \frac{X^2}{X + 1} \]

but...

http://math.mit.edu/~ormsby/not_def.gif
The final puzzle:

Classify rational functions

\[f = \frac{p}{q} = \frac{x^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_{n-1}x^{n-1} + \cdots + b_0} \]

up to **ALGEBRAIC EQUIVALENCE**.
The final puzzle:

Classify rational functions

\[f = \frac{p}{q} = \frac{X^n + a_{n-1}X^{n-1} + \ldots + a_0}{b_{n-1}X^{n-1} + \ldots + b_0} \]

up to ALGEBRAIC EQUVALENCE.

Two degree \(n \) rational functions \(f, g \) are algebraically equivalent if there is a chain of algebraic deformations

\[f = f_0 \stackrel{H_1}{\sim} f_1 \stackrel{H_2}{\sim} f_2 \stackrel{H_m}{\sim} \ldots \stackrel{H_m}{\sim} f_m = g \]
Maps of spheres:

Plugging real or complex values into $f = \frac{p}{q}$,

$f_R : \mathbb{R} \longrightarrow \mathbb{R}$

$f_c : \mathbb{C} \longrightarrow \mathbb{C}$

NOT defined when $q(x) = 0$.
Maps of spheres:

Plugging real or complex values into $f = \frac{p}{q}$,

$\begin{align*}
 f_{\mathbb{R}} &: \mathbb{R} \longrightarrow \mathbb{R} \\
 f_{\mathbb{C}} &: \mathbb{C} \longrightarrow \mathbb{C}
\end{align*}$

NOT defined when $q(x) = 0$.

So add a POINT AT INFINITY:

$\begin{align*}
 f_{\mathbb{R}} &: S^1 \longrightarrow S^1
\end{align*}$
Maps of spheres:

Plugging real or complex values into $f = \frac{p}{q}$,

$f_R : \mathbb{R} \rightarrow \mathbb{R}$

$f_c : \mathbb{C} \rightarrow \mathbb{C}$

NOT defined when $q(x) = 0$.

So add a POINT AT INFINITY:

∞ \mathbb{S}^2

$f_c : \mathbb{S}^2 \rightarrow \mathbb{S}^2$
Maps of spheres (ct'd):

So real rational functions produce continuous maps

\[f_R : S^1 \to S^1 \] \quad \text{If } q(x) = 0, \text{ then } f(x) = \infty;
\]

\[f_c : S^2 \to S^2 \] \quad \text{also } f(\infty) = \infty.\]
Maps of spheres (ct'd):

So real rational functions produce continuous maps
\[f_R : S^1 \rightarrow S^1 \] If \(q(x) = 0 \), then \(f(x) = \infty \);
\[f_C : S^2 \rightarrow S^2 \] also \(f(\infty) = \infty \).

If we let \(T \) take values in the interval \(I = [0,1] \),
then \(H : f \simeq g \) induces HOMOTOPY
\[H_R : f_R \simeq g_R, \quad H_C : f_C \simeq g_C. \]
Maps of spheres (ct'd):

So real rational functions produce continuous maps
\[f_R : S^1 \to S^1 \] ? If \(q(x) = 0 \), then \(f(x) = \infty \);
\[f_c : S^2 \to S^2 \] also \(f(\infty) = \infty \).

If we let \(T \) take values in the interval \(I = [0,1] \),
then \(H : f \sim g \) induces HOMOTOPIES
\[H_R : f_R \sim g_R, \quad H_c : f_c \sim g_c. \]

On "real points" we can view \(H_R \) as

\[I \quad \xrightarrow{H_R} \quad S^1 \]

"continuously varying family of maps \(S^1 \to S^1 \)."
A topological variation:

On "complex points" we get...

On the diagram, the text reads:

$$H_C$$

"continuous family of maps $S^2 \rightarrow S^2$"
A topological variation:

On "complex points" we get:

\[\alpha, \beta : X \to Y \text{ are homotopic if there is a homotopy } H : X \times \mathbb{I} \to Y \text{ such that } H_0 = \alpha, H_1 = \beta. \]

An algebraic deformation induces homotopies:

\[H_R : f_R \simeq g_R, \quad H_c : f_c \simeq g_c \]
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.

EXAMPLES:

[Diagram of spheres with marked points]
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.

EXAMPLES:
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.

Examples:
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.

EXAMPLES:
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.

Examples:

[pinch diagram]
Wrapping spheres around spheres:

Let's address the simpler problem of classifying continuous maps $S^1 \to S^1$ and $S^2 \to S^2$ (that send ∞ to ∞) up to homotopy.

EXAMPLES:

![Diagram showing the concept of wrapping spheres around spheres with labels for pinch and fold.](image)
The degree of a map:

We may assume $f : S^n \rightarrow S^n$ is smooth and choose a regular value y in its target.
The degree of a map:

We may assume $f : S^n \rightarrow S^n$ is smooth and choose a regular value y in its target.
The degree of a map:

We may assume $f : S^n \to S^n$ is smooth and choose a regular value y in its target.

If $f^{-1}(y) = \{x \in S^n \mid f(x) = y\}$, then $|f^{-1}(y)|$ changes by an even number under homotopy. The value $|f^{-1}(y)| \mod 2$ is called the MOD 2 DEGREE of f.
The degree of a map:

We may assume $f : S^n \rightarrow S^n$ is smooth and choose a regular value y in its target.

If $f^{-1}(y) = \{ x \in S^n \mid f(x) = y \}$, then $|f^{-1}(y)|$ changes by an even number under homotopy.

The value $|f^{-1}(y)| \mod 2$ is called the MOD 2 DEGREE of f.

Can we do better?
The degree of a map:

Label each point in $f^{-1}(y)$ with a sign:

+1 if f locally PRESERVES ORIENTATION
-1 if f locally REVERSES ORIENTATION
The degree of a map:

Label each point in $f^{-1}(y)$ with a sign:

$+1$ if f locally **PRESERVES ORIENTATION**

-1 if f locally **REVERSES ORIENTATION**

$$
\begin{align*}
\text{degree 1} & \quad \begin{cases}
+1 \\
-1 \\
+1
\end{cases} \\
\end{align*}
$$
The degree of a map:

Label each point in \(f^{-1}(y) \) with a sign:

+1 if \(f \) locally PRESERVES ORIENTATION
-1 if \(f \) locally REVERSES ORIENTATION

Homotopies only cancel points with opposite sign, so the sum of the signs in \(f^{-1}(y) \) is invariant under homotopy: the DEGREE of \(f \), \(\text{deg}(f) \).
Brouwer's Theorem:

The degree map is a bijective correspondence between homotopy classes of maps $S^n \to S^n$ and the integers, \mathbb{Z}, for $n \geq 1$.
Brouwer's Theorem:

The degree map is a bijective correspondence between homotopy classes of maps $\mathbb{S}^n \to \mathbb{S}^n$ and the integers, \mathbb{Z}, for $n \geq 1$.

Consequence: If f and g are algebraically equivalent rational functions, then

$$\deg(f_R) = \deg(g_R) \quad \text{and} \quad \deg(f_C) = \deg(g_C)$$

Question: What algebraic data determines $\deg(f_R)$ and $\deg(f_C)$?
Degrees of rational functions:

Proposition: If \(f = \frac{P}{Q} = \frac{x^n + a_{n-1}x^{n-1} + \ldots + a_0}{b_{n-1}x^{n-1} + \ldots + b_0} \) is a degree \(n \) rational function, then \(\deg(f_c) = n \).
Degrees of rational functions:

Proposition: If \(f = \frac{P}{Q} = \frac{x^n + a_{n-1}x^{n-1} + \ldots + a_0}{b_{n-1}x^{n-1} + \ldots + b_0} \) is a degree \(n \) rational function, then \(\deg(f_c) = n \).

Proof sketch: Consider \(f_c^{-1}(0) \). We have

\[
|f_c^{-1}(0)| = |P^{-1}(0)| = |\{ \text{roots of } P \}|
\]

If \(0 \) is a regular value of \(f_c \) then this number is \(n \).
Degrees of rational functions:

Proposition: If \(f = \frac{P}{Q} = \frac{x^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_{n-1}x^{n-1} + \cdots + b_0} \) is a degree \(n \) rational function, then \(\deg(f_c) = n \).

Proof sketch: Consider \(f_c^{-1}(0) \). We have

\[
|f_c^{-1}(0)| = |P^{-1}(0)| = |\{\text{roots of } P\}|.
\]

If \(0 \) is a regular value of \(f_c \) then this number is \(n \).

Exercise: \(f_c \) preserves orientation everywhere.
Proposition: If $f'(x) \neq 0, \deg(f_R) = \sum \frac{\text{sign}(f'(x))}{f(x) = 0}$.
Degrees of rational functions:

\[\deg(f_R) = 1 + 1 - 1 + 1 = 2 \]

Proposition: If \(f'(x) \neq 0 \) and \(f(x) = 0 \), then

\[\deg(f_R) = \sum_{f(x) = 0} \text{sign}(f'(x)). \]
A relationship between degrees:

If f is a degree n rational function, we know that $\deg(f_c) = n$.

How does $\deg(f_{\mathbb{R}})$ compare to $\deg(f_c)$?
A relationship between degrees:

If \(f \) is a degree \(n \) rational function, we know that \(\deg(f_c) = n \).

How does \(\deg(f_{R}) \) compare to \(\deg(f_c) \)?

Observe:

- \(f \) has at most \(n \) real roots
- non-real roots come in conjugate pairs
- \(\deg(f_{R}) = n - (\# \text{ non-real roots}) - 2 (\# \text{ roots } x \text{ with } f'(x) < 0) \)
A relationship between degrees:

If f is a degree n rational function, we know that $\deg(f_c) = n$.

How does $\deg(f_{IR})$ compare to $\deg(f_c)$?

Observe:
- f has at most n real roots
- non-real roots come in conjugate pairs
- $\deg(f_{IR}) = n - (\#\text{non-real roots}) - 2(\#\text{roots w/ } f'(x) < 0)$

Proposition: $-n \leq \deg(f_{IR}) \leq n$ and $\deg(f_{IR}) = n$ (2).
Summary:

If f and g are algebraically equivalent, we know that $\deg(f_R) = \deg(g_R)$ and $\deg(f_C) = \deg(g_C)$.

We also know $n = \deg(f_C)$ is a non-negative integer and $m = \deg(f_R)$ satisfies $-n \leq m \leq n$, $m \equiv n \pmod{2}$.
If f and g are algebraically equivalent, we know that $\deg(f_R) = \deg(g_R)$ and $\deg(f_C) = \deg(g_C)$.

We also know $n = \deg(f_C)$ is a non-negative integer and $m = \deg(f_R)$ satisfies $-n \leq m \leq n$, $m = n$ (2).

Are all such pairs (m, n) realized as $(\deg(f_R), \deg(f_C))$ for some f?
Summary:

If f and g are algebraically equivalent, we know that $\deg(f_{\mathbb{R}}) = \deg(g_{\mathbb{R}})$ and $\deg(f_{\mathbb{C}}) = \deg(g_{\mathbb{C}})$.

We also know $n = \deg(f_{\mathbb{C}})$ is a non-negative integer and $m = \deg(f_{\mathbb{R}})$ satisfies $-n \leq m \leq n$, $m = n$ (2).

Q1 Are all such pairs (m, n) realized as $(\deg(f_{\mathbb{R}}), \deg(f_{\mathbb{C}}))$ for some f?

Q2 Does $(\deg(f_{\mathbb{R}}), \deg(f_{\mathbb{C}})) = (\deg(g_{\mathbb{R}}), \deg(g_{\mathbb{C}}))$ imply f is algebraically equivalent to g?
The resultant:

Polynomials \(p = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \),
\(q = b_{n-1}x^{n-1} + \cdots + b_0 \)

have no common root if and only if their RESULTANT is a unit.
The resultant:

Polynomials \(p = x^n + a_{n-1} x^{n-1} + \ldots + a_0, \)
\(q = b_{n-1} x^{n-1} + \ldots + b_0 \)

have no common root if and only if their \underline{RESULTANT} is a unit.

E.g. If \(p = x^3 + 5x^2 + 7x - 3 \) and \(q = 2x^2 - x + 11 \), then

\[
\text{res}(p, q) = \det \begin{pmatrix}
1 & 2 \\
5 & -1 & 2 \\
7 & 5 & 11 & -1 & 2 \\
-3 & 7 & 11 & -1 & 2 \\
-3 & 11 & \end{pmatrix}
\]

\(\in \mathbb{Z} \) Sylvester matrix

\(\mathbb{Z} \) Sylvester matrix
The resultant:

If \(H = \frac{P}{Q} : f \sim g \) then we can form \(\text{res}(P, Q) \) as a polynomial in \(T \).

In order for \(H \) to be an algebraic deformation, \(\text{res}(P, Q) \) must be constant and nonzero.
The resultant:

If $H = \frac{P}{Q} : f \approx g$ then we can form $\text{res}(P, Q)$ as a polynomial in T.

In order for H to be an algebraic deformation, $\text{res}(P, Q)$ must be constant and nonzero.

So if $f = \frac{p}{q}$, $g = \frac{p'}{q'}$, then

$$\text{res}(p, q) = \text{res}(P, Q) = \text{res}(p', q').$$

Let $\text{res}(f) = \text{res}(p, q)$.
The solution:

Notation $\mathcal{F} = $ pointed rational functions

$\pi_0 \mathcal{F} = $ pt’d rat’l f’ns up to algebraic equivalence

$\pi_0 \mathcal{F} \cong \{(n, m, \lambda) \mid n \in \mathbb{N}, m \in \mathbb{Z}, \lambda \in \mathbb{R}, -n \leq m \leq n, n \equiv m \ (2), (-1)^{(n^2 - m)/2} \lambda > 0\}$

$[f] \mapsto (\deg(f_{\mathbb{C}}), \deg(f_{\mathbb{R}}), \text{res}(f))$
A generalization:

What if the coefficients of our functions were in:
- \mathbb{C}
- \mathbb{Q}
- $\mathbb{Z}/p\mathbb{Z}$
- some other field

instead of \mathbb{R}?
A generalization:

What if the coefficients of our functions were in:
- \mathbb{C}
- \mathbb{Q}
- $\mathbb{Z}/p\mathbb{Z}$
- some other field

instead of \mathbb{R}?

Could we still classify rational functions up to algebraic equivalence?
A generalization:

What if the coefficients of our functions were in:
- \(\mathbb{C} \) — just use \(\deg(f_c) \) and \(\text{res}(f) \)
- \(\mathbb{Q} \) — current methods give partial results
- \(\mathbb{Z}/p\mathbb{Z} \) — subtle
- some other field — a uniform answer?

Could we still classify rational functions up to algebraic equivalence?
The Bezout form:

For polynomials $p(X), q(X)$, we have

$$X-Y \mid p(x)q(y) - p(y)q(x).$$

Hence

$$S_{p,q}(X,Y) = \frac{p(X)q(Y) - p(Y)q(X)}{X-Y}.$$

$$= \sum_{1 \leq k, \ell \leq n} c_{k,\ell} X^{k-1} Y^{\ell-1}.$$
The Bezout form:

For polynomials $p(X), q(X)$, we have

$$X-Y \mid p(x)q(y) - p(y)q(x).$$

Hence

$$S_{p,q}(x,y) = \frac{p(x)q(y) - p(y)q(x)}{X-Y}$$

$$= \sum_{1 \leq k, l \leq n} c_{k,l} x^{k-1} y^{l-1}.$$

The BEZOUT FORM of $f = \frac{p}{q}$ is the bilinear form

$$\text{Bez}(f)(x, y) = \sum_{1 \leq k, l \leq n} c_{k,l} x_k y_l.$$

with matrix $(c_{k,l})$.
Bezout form as derivative:

The Bezout form of f is closely related to f'.

$$\lim_{x \to y} \delta_{p,q}(x,y) = \lim_{x \to y} \frac{p(x)q(y) - p(y)q(x)}{x-y}$$
Bezout form as derivative:

The Bezout form of f is closely related to f'.

$$\lim_{x \to y} \delta_{p,q}(x,y) = \lim_{x \to y} \frac{p(x)q(y) - p(y)q(x)}{x-y}$$

$$= \lim_{x \to y} \frac{p(x)q(y) - p(y)q(y)}{x-y} = \frac{q(x) - q(y)}{x-y}$$
Bezout form as derivative:

The Bezout form of f is closely related to f'.

$$\lim_{x \to y} \delta_{p,q}(x,y) = \lim_{x \to y} \frac{p(x)q(y) - p(y)q(x)}{x-y}$$

$$= \lim_{x \to y} \frac{p(x) - p(y)}{x-y} q(y) - p(y) \frac{q(x) - q(y)}{x-y}$$

$$= p'(y)q(y) - p(y)q'(y)$$
Bezout form as derivative:

The Bezout form of f is closely related to f'.

$$\lim_{x \to y} \delta_{p,q}(x,y) = \lim_{x \to y} \frac{p(x)q(y) - p(y)q(x)}{x-y}$$

$$= \lim_{x \to y} \frac{p(x) - p(y)}{x-y} q(y) - p(y) \frac{q(x) - q(y)}{x-y}$$

$$= p'(y)q(y) - p(y)q'(y)$$

$$= f''(y) \cdot q(y)^2.$$
Bezout form as derivative:

The Bezout form of f is closely related to f'.

$$\lim_{x \to y} \delta_{p,q}(x,y) = \lim_{x \to y} \frac{p(x)q(y) - p(y)q(x)}{x - y}$$

$$= \lim_{x \to y} \frac{p(x) - p(y)}{x - y} q(y) - p(y) \frac{q(x) - q(y)}{x - y}$$

$$= p'(y) q(y) - p(y) q'(y)$$

$$= f'(y) \cdot q(y)^2.$$

- If we're working over \mathbb{R}, this quantity is closely related to $\deg(f_R)$.

- We should think of $\text{Bez}(f) = (c_{k,1})$ as an algebraic replacement for differential data.
A solution over any field:

Two bilinear forms B, B' are \textbf{ISOMETRIC} if there is an invertible matrix A such that $A^tBA = B'$.

Let $\text{Bil}(k) =$ isometry classes of bilinear forms over the field k.
A solution over any field:

Two bilinear forms B, B' are ISOMETRIC if there is an invertible matrix A such that $A^T B A = B'$.

Let $\text{Bil}(k) = \text{isometry classes of bilinear forms over the field } k$.

Theorem (Cazanave, Morel, Barge, Lannes)

Algebraic equivalence classes of rat’l fnns are completely determined by Bez and res. There is precisely one for each isometry class B and scalar $\lambda \in k^*$ such that $(-1)^{(m-1)/2} \lambda \det(B) \in (k^*)^2$.
Classification examples:

- $\text{Bil}(R) = \mathbb{N} \times \mathbb{N}$
 classified by dimension and signature
Classification examples:

- $\text{Bil}(\mathbb{R}) = \mathbb{N} \times \mathbb{N}$
 classified by dimension and signature

- $\text{Bil}(\mathbb{C})$
 classified by dimension
Classification examples:

- $\text{Bil}(\mathbb{R}) = \mathbb{N} \times \mathbb{N}$
 classified by dimension and signature
- $\text{Bil}(\mathbb{C})$
 classified by dimension
- $\text{Bil}(\mathbb{Q})$
 studied via completions — Hasse principle
Classification examples:

- $\text{Bil}(\mathbb{R}) = \mathbb{N} \times \mathbb{N}$
 classified by dimension and signature

- $\text{Bil}(\mathbb{C})$
 classified by dimension

- $\text{Bil}(\mathbb{Q})$
 studied via completions — Hasse principle

- $\text{Bil}(\mathbb{Z}/\mathfrak{q}\mathbb{Z})$ [or $\text{Bil}(\mathbb{F}_q)$]
 only two isometry classes in each dimension
Classification examples:

- $\text{Bil}(\mathbb{R}) = \mathbb{N} \times \mathbb{N}$
 classified by dimension and signature

- $\text{Bil}(\mathbb{C})$
 classified by dimension

- $\text{Bil}(\mathbb{Q})$
 studied via completions — Hasse principle

- $\text{Bil}(\mathbb{Z}/p\mathbb{Z})$ [or $\text{Bil}(\mathbb{F}_q)$]
 only two isometry classes in each dimension

- $\text{Bil}(\text{general field})$ — long and interesting history
Motivic Homotopy:
Motivic Homotopy:

• Rational functions are really $P_k' \rightarrow P_k$.

• Alg. def’s are really $P_k' \times /A_k' \rightarrow P_k'$ [naïve A'-homotopies].

• With enough ALGEBRAIC TOPOLOGY and ALGEBRAIC GEOMETRY applied, we have a brand new tool that answers decades-old questions about bilinear forms.
Thank you!

Slides and animations available at http://math.mit.edu/~ormsby/