Proposition 5: Definition of Sets

\[\{ x \mid P(x) \} \]

\[\{ x \in A \mid P(x) \} \]

\[\{ x \in \mathbb{R} \mid 0 \leq x \} = [0, \infty) \]

\[\{ x \in \mathbb{R} \mid x^2 = 1 \} = \{-1, 1\} \]

\[\{ x \in \{ \text{brown} \} \mid x \text{ has brown hair} \} \]

Special sets:

\[\mathbb{N} = \{ \text{natural} \} = \{ 0, 1, 2, 3, \ldots \} \]

\[\mathbb{Z} = \{ \text{integers} \} = \{ 0, 1, 2, 3, \ldots, -1, -2, -3, \ldots \} \]

\[\mathbb{Q} = \{ \text{rational} \} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \} \]

\[\mathbb{R} = \{ \text{real} \} \]

\[\mathbb{C} = \{ \text{complex} \} = \mathbb{R} + \sqrt{-1} \]
Relationships & operations w/ sets

Sets A, B. Say \(A \) is a subset of \(B \), written \(A \subseteq B \), when every \(a \in A \) is also an element of \(B \).

\[\begin{array}{c}
\emptyset \\
\infty \\
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}
\end{array} \]

\(A = B \) when \(A \) & \(B \) contain precisely the same elements: \(A \subseteq B \), \(B \subseteq A \).

\(A \) is a proper subset of \(B \) when \(A \subseteq B \) and \(A \not\subseteq B \). Write \(A \subset B \).

\(\emptyset \subseteq A \), \((0, 1) \subseteq \mathbb{R} \)

\(A \subseteq A \), \(\emptyset \subseteq A \)

\(\subseteq \) is not the same as \(\in \)

Defn The intersection of sets \(A, B \) is the collection of objects in both \(A \) and \(B \):

\[A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \]
The union of A and B is the set of objects in A or B:

$$A \cup B = \{ x | x \in A \text{ or } x \in B \}$$

Reading $\bigcap_{k \in I} A_k$

$\bigcup_{k \in I} A_k$

The complement of A in B is

$$B \setminus A = \{ b \in B | b \notin A \}$$
How do we show sets A, B are equal?

Common technique: Show $A \subseteq B \land B \subseteq A$.

e.g. Let $\{3m+5n \mid m, n \in \mathbb{Z}\} = A$. Then $A = \mathbb{Z}$.

It is easy to see that $A \subseteq \mathbb{Z}$. Next show that $\mathbb{Z} \subseteq A$.

Let x be some integer. By the division algorithm, $x = 3l + r$ where $l, r \in \mathbb{Z}$ and $r \in \{0, 1, 2\}$.

If $r = 0$, then $x = 3 \cdot l + 0 = 3 \cdot l + 5 \cdot 0$ and we can take $m = l$, $n = 0$ to see that $x \in A$. If $r = 1$,

then $x = 3 \cdot l + 1 = 3 \cdot l + (3 \cdot 2 + 5 \cdot (-1))$

$$= 3(l+2) + 5 \cdot (-1) \in A.$$

If $r = 2$, then $x = 3 \cdot l + 2 = 3 \cdot l + (3 \cdot (-1) + 5 \cdot (1))$

$$= 3(l-1) + 5 \cdot 1 \in A.$$

Thus x is always a member of A, whence $\mathbb{Z} \subseteq A$.

Since $A \subseteq \mathbb{Z}$ & $\mathbb{Z} \subseteq A$, we know $A = \mathbb{Z}$. \square
Prop: For all sets A, B, C, we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Aside: Mnemonic: $\emptyset \leftrightarrow \times \leftrightarrow \land$

$\cup \leftrightarrow + \leftrightarrow \lor$

Distribution!