The rational numbers

What can we do w/ \(\mathbb{Q} \) that we cannot do w/ \(\mathbb{Z} \)?

- multiplicative inverses:
 \[\exists \ 5^{-1} \]
 \[\forall x \in \mathbb{Q} \setminus \{0\} \exists x^{-1} \in \mathbb{Q} \text{ s.t.} \ x \cdot x^{-1} = 1 \]

We can solve eq’ns \(x \in \mathbb{Q} \)

\[m \cdot x = n \text{ has a sol’n for} \ m \in \mathbb{Q} \setminus \{0\}, \ n \in \mathbb{Q} \]

(also for \(m = n = 0 \))

Invert division?

Idea: Record pairs of integers so that

\((m, 1) \) represents \(m \in \mathbb{Z} \)

\((1, m) \) represents a sol’n to \(m \cdot x = 1 \).

\(\Delta \) should not allow \(0 \) in second coord.
Define \(\mathbb{Q} = \left(\mathbb{Z} \times \left(\mathbb{Z} \times \mathbb{Z} \right) \right) / \sim \)

where \((a, b) \sim (a', b') \) when

\[\exists c \in \mathbb{Z} \text{ s.t. } a = ac', b = bc' \]

or \(a = a'c, b = b'c \).

Write \([a, b]\) for the equivalent class of \((a, b)\).

\([6, 21] = [10, 35]\)

\((a, b) \sim (a', b') \) if \(\exists (a'', b'') \) s.t.

\(a = ca'', b = cb'' \)

or \(a = d a'', b = d b'' \).

Note: “Lowest terms” corresponds to closest to origin in an equivalent class. (W/ positive second coord)

Get representative of \([a, b]\) \ w/ \(a \in \mathbb{Z}, b > 0 \)
Arithmetic \[[m,n] \cdot [p,q] = [m \cdot p, n \cdot q] \]
\[[m,n] + [p,q] = [(m \cdot q)+(p \cdot n), n \cdot q] \]
Check: well-defined. \[\text{Convention: takes precedence over +} \]

Thus \((\mathbb{Q}, +, \cdot) \)

has the following properties:

1) \(+, \cdot \) are commutative, associative binary ops

2) \(\exists \) additive identity \(0 = [0,1] \) s.t. \[\forall m \in \mathbb{Q} \rightarrow m + 0 = m = 0 + m. \]

3) \(\exists \) multiplicative identity \(1 = [1,1] \) s.t. \[\forall m \in \mathbb{Q} \rightarrow m \cdot 1 = m = 1 \cdot m, \text{ and } 0 \neq 1. \]

4) There are additive inverses for all \(m \in \mathbb{Q} \)

5) There are multiplicative inverses for all \(m \in \mathbb{Q} \setminus \{0\} \)

6) Distributivity: \(\forall m,n,p \in \mathbb{Q} \rightarrow m \cdot (n+p) = (m \cdot n)+(m \cdot p) \)

\[\text{class notes Page 64} \]
Defn: A field is a set F equipped w/ binary operations $+$, \cdot s.t. properties
1 - 6 of \mathbb{Q} hold w/ \mathbb{Q} replaced by F.

* \mathbb{Q} is a field

* \mathbb{R} will be a field

* \mathbb{C} is a field

* \mathbb{Z} are not a field (no mult inverses)

* $\mathbb{Z}/n\mathbb{Z}$ satisfy 1 - 4 & 6

5 does not hold for, e.g., $\mathbb{Z}/6\mathbb{Z}$: only $[1], [5]$ have inverses

Fact: If $n = p$ is prime, then $\mathbb{Z}/p\mathbb{Z}$ is a field.

$$[m,n] = \frac{m}{n}$$ in \mathbb{Q}.