Goals

- What is a number?
- Prove that $1 + 1 = 2$.
- An abstract "value" or "quantity" representing "how many."
- Provide quantitative measurements.
- The measurements have "units" — things in the same category — but numbers don't capture quantity w/o reference to category.

Inductive sets

\emptyset $\{\emptyset\}$ $\{\emptyset, \{\emptyset\}\}$ $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

0 1 2 3

0 $\{\emptyset\}$ 1 $\{\emptyset, \{\emptyset\}\}$ 2 $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$
Defn. For any set S, the successor of S is

$$S^+ = S \cup \{S\}.$$

Note. Self-referentially builds in "1 more" element.

$0 = \emptyset$, $1 = 0^+$, $2 = 1^+$, $3 = 2^+$, \ldots

Defn. A set J is inductive if:

1. $\emptyset \in J$
2. For all $n \in J$, $n^+ \in J$.

Axiom. There exists an inductive set.

Thm. Suppose S is a set containing inductive subsets. Then the intersection of these subsets is also inductive.

Pf. Any in. subset contains \emptyset by (1), thus their intersection contains \emptyset as well. If n is in the intersection, then n belongs to all the in. subsets. By (2), $n^+ \in$ all in. subsets $\Rightarrow n^+ \in$ intersection of in. subsets.\square
Defn Let J be some inductive set. Let N be the intersection of all inductive subsets of J. This is the set of natural numbers.

Remk N is the smallest (under \subseteq) inductive subset of J.

Remk The defn depend on J — N nonetheless is independent of J.

Thm 0 is not the successor of any elt of N.

Every $n \notin \inf$ is the successor of some elt of N.

If $0 = \emptyset$ is clearly not the successor $S^+ = S \cup \{S\}$ of any S. Now assume for contradiction that $n \in N \setminus \inf$ is not the successor of any elt of N.

Then $N \setminus \inf$ is an inductive subset of N.

This is a contradiction by minimality of N amongst inductive subsets. \square
Induction Theorem Suppose P is a property depending on (some) elements of \mathbb{N}. Suppose

1. $P(0)$ is true
2. $\forall n \in \mathbb{N}, \left[P(n) \implies P(n^+) \right]$ is true

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Proof Let $T = \{ n \in \mathbb{N} \mid P(n) \text{ is true} \}$. Suffices to show T is an inductive subset of \mathbb{N}, whence $T = \mathbb{N}$ & we're done. $\emptyset \in T$ since $P(0)$ is true. $\emptyset \subset \mathbb{N}$ & we're done. Now suppose $n \in T$ so that $P(n) \implies P(n) = T$. Then $P(n^+) = T$ by (2). Thus $n^+ \in T$, proving T is inductive. \[\square \]

Thus $\forall n \in \mathbb{N}$, $0 \in n^+$. \[\square \]