Reading: Ireland and Rosen, Chapter 4 (including the exercises)

Problems:

The pigeonhole principle and congruences:
1. Let \(m \) be a positive integer and \(a_1, \ldots, a_m \) be any integers, possibly repeating. Show that for some nonempty subset \(S \) of the indices \(\{1, \ldots, m\} \), \(\sum_{i \in S} a_i \equiv 0 \pmod{m} \). (Hint: pigeonhole the partial sums.)

The fifth Fermat number is composite:
2. Fermat defined the numbers \(F_n = 2^{2^n} + 1 \) for \(n \geq 0 \). Thus
 \[
 F_0 = 3, \quad F_1 = 5, \quad F_2 = 17, \quad F_3 = 257, \\
 F_4 = 65537, \quad F_5 = 4294967297, \quad \text{etc.}
 \]
 He conjectured that all the \(F_n \) are prime, as indeed \(F_0 \) through \(F_4 \) are. Euler showed that \(F_5 \) is composite, using techniques that were actually available to Fermat and applied by him in similar situations. André Weil, in his book \textit{Number Theory: An Approach Through History}, conjectures that Fermat tried these techniques on \(F_5 \), made an arithmetic error (as he apparently often did), and never rechecked them. Following Euler, investigate whether \(F_5 \) is composite. To search for candidate prime factors \(p \) of \(F_5 \), reason as follows: \(p \mid 2^{32} + 1 \) is equivalent to \(2^{32} \equiv -1 \pmod{p} \), showing that 2 has order 64 in \((\mathbb{Z}/p\mathbb{Z})^* \). It follows that \(64 \mid \phi(p) = p - 1 \), so \(p \) must take the form \(p = 64k + 1 \). Thus candidates for \(p \) are
 \[
 193, \quad 257, \quad 449, \quad 577, \quad 641, \quad \text{etc.}
 \]
 Testing whether each of these primes \(p \) divides \(F_5 \) is easy. As above, we need to check whether \(2^{32} \equiv -1 \pmod{p} \), so simply compute \(2, 2^2, 2^4, 2^8, \) etc. modulo \(p \) up to \(2^{32} \). Use this method to show that 193 does not divide \(F_5 \). Neither do 257, 449 or 577, but don’t bother showing this. Use this method to show that 641 does divide \(F_5 \).
 Note that this shows \(F_5 \) to be composite without ever computing it.

Using algebra rather than arithmetic:
3. The Fibonacci numbers are \(u_0 = 0, u_1 = 1, u_n = u_{n-1} + u_{n-2} \) for \(n \geq 2 \) (this is slightly different indexing from earlier). Read through the following method to compute a closed form expression for \(u_n \) via linear algebra:
Let \(A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \). Induction quickly shows that \(A^n = \begin{bmatrix} u_{n-1} & u_n \\ u_n & u_{n+1} \end{bmatrix} \) for \(n \geq 1 \). So to find \(u_n \) in closed form it suffices to compute either off-diagonal entry of \(A^n \).

To diagonalize \(A \) with no mess, one easily computes that its characteristic polynomial is \(\chi_A(\lambda) = \lambda^2 - \text{tr}(A)\lambda + \det(A) = \lambda^2 - \lambda - 1 \). We let \(\tau \) and \(\tau' \) denote the roots of \(\chi_A \) but we don’t compute them yet—the numerical values only muddy the calculation. The coefficients of the characteristic polynomial show that

\[
(1) \quad \tau + \tau' = 1, \quad \tau\tau' = -1.
\]

Note that the second relation in (1) tells us that one root—say, \(\tau \)—is positive and the other negative. Thus the roots are distinct and each corresponding eigenspace of \(A \) has dimension 1.

In particular, the matrix

\[
A - \tau I = \begin{bmatrix} -\tau & 1 \\ 1 & 1 - \tau \end{bmatrix}
\]

must have nullity 1 and therefore rank 1, meaning its two rows are linearly dependent so that any vector orthogonal to the first row spans the matrix’s nullspace. For example, \(\begin{bmatrix} 1 \\ \tau \end{bmatrix} \) works. Continuing this argument shows that

\[
A^n = PJ^nP^{-1} \quad \text{where } J = \begin{bmatrix} \tau & 0 \\ 0 & \tau' \end{bmatrix} \text{ and } P = \begin{bmatrix} 1 & 1 \\ \tau & \tau' \end{bmatrix},
\]

so \(P^{-1} = \frac{1}{\tau' - \tau} \begin{bmatrix} \tau' & -1 \\ -\tau & 1 \end{bmatrix} \).

To obtain a closed form expression for \(u_n \), compute

\[
(\tau' - \tau)A^n = \begin{bmatrix} 1 & 1 \\ \tau & \tau' \end{bmatrix} \begin{bmatrix} \tau^n & 0 \\ 0 & (\tau')^n \end{bmatrix} \begin{bmatrix} \tau' & -1 \\ -\tau & 1 \end{bmatrix} = \begin{bmatrix} \tau^n & (\tau')^n - \tau^n \\ * & * \end{bmatrix}
\]

to show that

\[
(2) \quad u_n = \frac{\tau^n - (\tau')^n}{\tau - \tau'}.
\]

Finally, since \(\tau, \tau' = (1 \pm \sqrt{5})/2 \), we have

\[
u_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n\sqrt{5}}.
\]
Note how clean the calculation is when one ignores the numerical value of τ until the end.

(a) Use relations (1) and the convention $\tau > 0$ to show that $|\tau'| < \tau$.
(b) Now use (2) to show that $\lim_{n \to \infty} (u_{n+1}/u_n) = \tau$. (None of this should require the numerical value of τ.)